EFISIENSI PENYELESAIAN NUMERIK PERSAMAAN NON-LINEAR DENGAN METODE NEWTON RAPHSON DAN METODE SECANT MENGGUNAKAN PROGRAM SOFTWARE BERBASIS PYTHON

Authors

  • Sinta Baiq Universitas Mataran
  • Amrullah Pendidikan Matematika, FKIP, Universitas Mataram, Mataram
  • Tabita Wahyu Triutami Pendidikan Matematika, FKIP, Universitas Mataram, Mataram
  • Sri Subarinah4 Pendidikan Matematika, FKIP, Universitas Mataram, Mataram

DOI:

https://doi.org/10.23969/jp.v8i3.10964

Keywords:

efficiency; non-liniar equations; Newton Raphson method; Secant method; Python

Abstract

Usually in our daily life, we ​​often encounter complex problems that require the theory of solving non-linear equations. This research aims to obtain programs for the Newton Raphson method and the Secant method in Python and to compare the efficiency of non-linear equations from the Newton and the Secant method in terms of the number of iterations, errors and program execution time. The functions that will be tested are polynomial functions, exponential functions and trigonometric functions. The research used is application type research. The program test was carried out three times by changing the coefficients and initial values. The format of a polynomial function is , exponential function ), trigonometric function . The output of this research is program code for polynomial functions, exponential functions and trigonometric functions. in one program it consists of the declaration of Newton's formula, Secant's formula, error, iteration table and execution time formula. From the six experiments carried out, results were obtained using the Newton method on polynomial functions, exponential functions and trigonometric functions, the number of iterations obtained was fewer with smaller errors and less time than the Secant method. So it was concluded that the Newton Raphson method was more efficient than the Secant method.

Downloads

Download data is not yet available.

References

Arjudin. (2011). Sifat Akar Polinom Dan Penerapannya Pada Sistem Persamaan Non Linier. http://eprints.uny.ac.id/7270/

Firdaus, A., Amrullah, Wulandari, N. P., & Hikmah, N. (2023). Analisis Efisiensi Integral Numerik Metode Simpson 1/3 dan Simpson 3/8 Menggunakan Program Software Berbasis Pascal. 9. https://doi.org/https://doi.org/10.37012/jtik.v9i2.1737

Herfina, N., Amrullah, & Junaidi. (2019). Efektivitas Metode Trapesium dan Simpson Dalam Penentuan Luas Menggunakan Pemrograman Pascal. Mandalika Mathematics and Educations Journal, 1(1), 53–65. https://doi.org/10.29303/jm.v1i1.1242

Hutagalung, S. N. (2017). Pemahaman metode numerik (Studi kasus metode New-Rhapson) menggunakan pemprogrman Matlab. Jurnal Teknologi Informasi, 1(1), 95. https://doi.org/10.36294/jurti.v1i1.109

Ritonga, J., & Suryana, D. (2019). Perbandingan kecepatan konvergensi akar persamaan non linier metode titik tetap dengan metode Newton Raphson menggunakan Matlab. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 11(2), 51–64. https://doi.org/10.37424/informasi.v11i2.17

Subarinah, S. (2022). Metode Numerik. FKIP Press.

Downloads

Published

2023-11-17

Most read articles by the same author(s)