Kalibrasi dan analisis ketidakpastian pengukuran sensor temperatur DHT22 menggunakan termometer digital terkalibrasi sebagai alat referensi
DOI:
https://doi.org/10.23969/ksjme.v1i2.39427Keywords:
Calibration, temperature sensor, DHT22, measurement uncertainty, linear regressionAbstract
The DHT22 digital temperature sensor is widely used in environmental monitoring, building automation, and Internet of Things (IoT) applications due to its low cost and ease of integration. However, its measurement accuracy and precision are limited by manufacturing variability, environmental conditions, and component ageing, which can lead to systematic errors. Therefore, calibration accompanied by measurement uncertainty analysis is required to ensure reliable temperature data. In this study, a DHT22 temperature sensor was calibrated using a calibrated digital thermometer as a reference instrument through a direct comparison method at several temperature points within the sensor’s operating range. Linear regression was applied to derive a correction equation, while measurement error and Type A and Type B uncertainties were evaluated to determine the combined measurement uncertainty. The results show that, before calibration, the DHT22 sensor exhibited a temperature-dependent bias, with errors exceeding 1 °C at medium to high temperatures. The application of the regression-based correction significantly reduced measurement errors and improved agreement with the reference values, as indicated by a high coefficient of determination (R² = 0.998). The combined measurement uncertainty was found to lie within a moderate accuracy range and to increase with temperature, with dominant contributions from measurement repeatability and reference instrument uncertainty. Consequently, the calibrated DHT22 sensor can be more reliably employed in environmental temperature measurement applications requiring moderate accuracy.Downloads
References
[1] A. Setiawan, M.A. Hariyono, A.F. Habibi, R. Rizkiansyah, and Z. ‘Izzatun Nisa, Rancang Bangun Alat Kalibrasi Thermogun Berbasis Arduino Uno, JEMPOL : Jurnal Elektronik Mahasiswa Polanka, (2024). https://api.semanticscholar.org/CorpusID:281045707.
[2] R. Pratama, Pengembangan Sistem Akuisisi Data Arus, Tegangan, Daya Dan Temperatur Pada Pembangkit Listrik Tenaga Surya, Jurnal Edukasi Elektro, Vol.3, (2020) pp.55–62. https://doi.org/10.21831/jee.v3i2.29812.
[3] R. Kusumah, H.I. Islam, and S. Sobur, Sistem Monitoring Suhu dan Kelembaban Berbasis Internet of Things (IoT) Pada Ruang Data Center, Journal of Applied Informatics and Computing, Vol.7, (2023) pp.82–88. https://doi.org/10.30871/jaic.v7i1.5199.
[4] T. Supriyono, G. Omar, N. Tamaldin, B. Ariantara, M. Yamin, M.R. Sumartono, and D.A.R. Wati, Investigation of Operating Temperature as a Key Factor in Determining Photovoltaic Module Cooling Specifications Investigation of Operating Temperature as a Key Factor in Determining Photovoltaic Module Cooling Specifications, Journal of Physics: Conference Series, Vol.2972 (2025, (2025) pp.012–019. https://doi.org/10.1088/1742-6596/2972/1/012019.
[5] T. Supriyono, G. Omar, N. Tamaldin, P. Soetikno, M.R. Sumartono, A. Romano, and M. Yamin, Performance comparison of monocrystalline and polycrystalline photovoltaic modules before testing with a cooling system, Cogent Engineering, Vol.11, (2024). https://doi.org/10.1080/23311916.2024.2430426.
[6] Noname, Ketidakpastian pengukuran, 2020.
[7] S. herayanti, lisna, basri arsya, rafika rahmatia, ridwan, Dasar pengukuran dan ketidakpastian, Dasar Pengukuran Dan Ketidakpastian Pengukuran, (2014) pp.1–8.
[8] P. Pandiangan, Ketidakpastian dan Pengukuran, Praktikum IPA, (2018) pp.1–35. http://repository.ut.ac.id/4772/1/PEPA4203-M1.pdf.
[9] M.F.A. Razak, M.Z. Hasan, J.A.M. Jobran, and S.A.S. Jamalli, Monitoring and Controlling Solar Photovoltaic (PV) Performance with Active Cooling System using IoT, Journal of Physics: Conference Series, (2021). https://doi.org/10.1088/1742-6596/2107/1/012001.
[10] L. Chen, L. Liu, S. Liu, Z. Shi, and C. Shi, Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis, ACS ES and T Water, Vol.17, (2025) pp.1–25. https://doi.org/10.3390/rs17040667.
[11] M. Uzair, S. Al-Kafrawi, K. Al-Janadi, and I. Al-Bulushi, A Low-Cost, Real-Time Rooftop IoT-Based Photovoltaic (PV) System for Energy Management and Home Automation, Energy Engineering: Journal of the Association of Energy Engineering, Vol.119, (2022) pp.83–101. https://doi.org/10.32604/EE.2022.016411.
[12] Bisaioti, Esp32 dan DHT11, Bisaioti, (2025) pp.1. https://bisaioti.com/dht11-esp32-temperature-humidity/.
[13] I. Suwandi, Perancangan Sistem Pengukuran Suhu Dan Kelembaban Otomatis Dengan Md_Parola Dan Sensor Dht22, Journal Of Power Electric And Renewable Energy, Vol.1, (2024) pp.30–37. https://doi.org/10.59811/jper.v1i2.88.
[14] S.A. Putri, A.T. Agus Salim, R.M. Bisono, B. Indarto, and R.T. Nurdiansyah, Rancang Bangun Alat Ukur Temperatur dan Kelembapan Sistem Pengkondisi Udara pada Kereta Rel Diesel Elektrik, TELKA - Telekomunikasi Elektronika Komputasi Dan Kontrol, Vol.8, (2022) pp.126–137. https://doi.org/10.15575/telka.v8n2.126-137.
[15] A. iriawan pratama Aji, Sistem Monitoring Dan Otomatisasi Kelembaban Tanah Udara Dan Suhu Pada Bayam Berbasis Android, Computer Based Information System Journal, Vol.9, (2021) pp.26–34. https://doi.org/10.33884/cbis.v9i2.4448.
[16] J.K. Khairina, Sistem Monitoring Pembersihan Kotoran Dan Pengaturan Suhu Kandang Kelinci Berbasis Raspberry Pi, Journal of Artificial Intelligence and Software Engineering (J-AISE), Vol.2, (2022) pp.1–5. https://doi.org/10.30811/jaise.v2i1.3085.
[17] Y.A. Kurnia Utama, Perbandingan Kualitas Antar Sensor Suhu dengan Menggunakan Arduino Pro Mini, E-NARODROID, Vol.2, (2016). https://doi.org/10.31090/narodroid.v2i2.210.
[18] F. Outferdine, K. Cherifi, D. Belkhiri, B. Bouachrine, and M. Ajaamoum, Implementation of a low-cost intelligent street light system using internet of things, Indonesian Journal of Electrical Engineering and Computer Science, Vol.33, (2024) pp.1387. https://doi.org/10.11591/ijeecs.v33.i3.pp1387-1396.
[19] S. Sidopekso, H. Nasbey, and A. Wibowo, Pengukuran I-V dengan Menggunakan Sun Simulator Sederhana, Vol.2, (2011) pp.79–82. https://elektro.pnj.ac.id/upload/artikel/files/03_Edit&Layout_Satwiko_JEE-Sept2011_Pengukuran I-V.pdf.
[20] E.Y. Yulianto, Kalibrasi transduser tekanan, laju aliran, suhu dan level air pada sistem instrumentasi proteksi reaktor, Brin Repository, (n.d.) pp.105–120. https://karya.brin.go.id/id/eprint/8495.
[21] Kalibrasi, Mengenal Standar Kalibrasi yang Biasa Digunakan di Perusahaan, Kalibrasi, (2023). https://news.kalibrasi.com/standar-kalibrasi/.
[22] N.T. Harjanto, Ketidakpastian Pengukuran Kekasaran Permukaan Kelongsong Bahan Bakar Nuklir dengan Roughness Tester Surtronic-25, PIN Pengelolaan Instalasi Nuklir, Vol.8, (201AD) pp.17–24. http://jurnal.batan.go.id/index.php/pin/article/view/2487.
[23] A.K. Adeleke, D.J.P. Montero, K.A. Olu-lawal, and O.K. Olajiga, Statistical techniques in precision metrology, applications and best practices, Engineering Science & Technology Journal, Vol.5, (2024) pp.888–900. https://doi.org/10.51594/estj.v5i3.944.
[24] A. Grous, Applied Metrology for Manufacturing Engineering, 1st ed., Wiley, Hoboken, 2013. https://doi.org/10.1002/9781118622551.
[25] Y. Hu, Y. Chu, Q. Wang, Z. Zhang, Y. Ming, A. Mei, Y. Rong, and H. Han, Standardizing Perovskite Solar Modules beyond Cells, Joule, Vol.3, (2019) pp.2076–2085. https://doi.org/10.1016/j.joule.2019.08.015.
[26] J.C.F.G.I. Metrology, Evaluation of measurement data — Guide to the expression of uncertainty in measurement, International Organization for Standardization Geneva ISBN, Vol.50, (2008) pp.134. http://www.bipm.org/en/publications/guides/gum.html.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Viki Sandia Yudha, Toto Supriyono, Januar Ghani M, Yusuf Rizky Ferdiansyah, Ramadani, Fajri Mardiawan, Rafli Fatah Al Munawar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
KOLECER Jurnal Ilmiah Teknik Mesin by Program Studi Teknik Mesin UNPAS is licensed under CC BY-NC 4.0


