STRUKTUR PERKEMBANGAN DASAR TUMBUHAN : STUDI EMBRIOGENESIS PADA EMBRIO ARABIDOPSIS

Authors

  • Nur Aminah Pulungan Universitas Riau
  • Wan Syafi’i Universitas Riau

DOI:

https://doi.org/10.23969/jp.v10i04.39972

Keywords:

Plant Development, Embryogenesis, Arabidopsis.

Abstract

Embryogenesis in angiosperms is a critical phase that determines the success of seed development and subsequent plant viability. The analysis shows that embryogenesis proceeds through coordinated stages that include zygote formation, tissue differentiation at the dermatogen and globular stages, and the formation of the shoot apical meristem (SAM), root apical meristem (RAM), and cotyledons at the heart stage. The seed coat, derived from maternal tissue, also undergoes functional differentiation, including the formation of secondary cell walls and the accumulation of protective metabolites such as flavonoids. A comprehensive analysis indicates that Arabidopsis embryogenesis is an integrative process controlled by genetic regulation, interactions between seed compartments, and interdependent metabolic and structural controls. These findings confirm that successful embryo development depends not only on morphogenesis but also on the coordination between the embryo, endosperm, and testa in forming a vigorous and adaptive seed.

Downloads

Download data is not yet available.

References

Armenta, A., Medina., Gillmor, C. S., Gao, P., Mora, J., & Macias. (2020). Developmental and genomic architecture of plant embryogenesis: from model plant to crops. Plant Communications 2, 100136. https://doi.org/10.1016/j.xplc.2020.100136

Baud, S., and Lepiniec, L. (2010). Physiological and developmental regulation of seed oil production. Prog. Lipid Res. 49:235–249. https://doi.org/10.1016/j.plipres.2010.01.001

Baskin CC, & Baskin JM. Seeds: ecology, biogeography, and evolution of dor-mancy and germination. 2nd ed. San Diego: Academic Press/Elsevier; 2014.

Baskin CC, & Baskin JM. The rudimentary embryo: an early angiosperm invention that contributed to their dominance over gymno-sperms. Seed Sci Res. 2023:33(2):1–12. https://doi.org/10.1017/S0960258523000168

Bayer, M., Nawy, T., Giglione, C., Galli, M., Meinnel, T., and Lukowitz, W. (2009). Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488. https://doi.org/10.1126/science.1167784

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and J€urgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. https://doi.org/10.1038/nature02085

Goldberg, R.B., de Paiva, G., and Yadegari, R. (1994). Plant embryogenesis: zygote to seed. Science 266:605–614. https://science.sciencemag.org/content/266/5185/605

Haughn, G., and Chaudhury, A. (2005). Genetic analysis of seed coat. development in Arabidopsis. Trends Plant Sci. 10:472–477. https://doi.org/10.1016/j.tplants.2005.08.005

Lepiniec, L., Debeaujon, I., Routaboul, J.-M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57:405–430. https://doi.org/10.1146/annurev.arplant.57.032905.105252

Leprince, O., Pellizzaro, A., Berriri, S., and Buitink, J. (2017). Late seed maturation: drying without dying. J. Exp. Bot. 68:827–841. https://doi.org/10.1093/jxb/erw363

Meinke, D.W. (2019). Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 306–325 https://doi.org/10.1111/nph.16071

Olsen, O.A. (2004). Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:214–228. https://doi.org/10.1105/tpc.017111

Reiser, L., & Fischer, R.L. (1993). The ovule and the embryo sac. Plant Cell. 5 : 1291–1301. https://doi.org/10.1105/tpc.5.10.1291

Robert, H.S., Park, C., Gutie` rrez, C.L., Wo´ jcikowska, B., Pencı´k, A., Nova´ k, O., Chen, J., Grunewald, W., Dresselhaus, T., Friml, J., et al. (2018). Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 4:548–553. https://doi.org/10.1038/s41477-018-0204-z

Robil, Janlo M. & Cao, Dechang. (2024). Visualizing embryogenesis in the seed. Plant Physiology, 2024, 196, 7–9. https://doi.org/10.1093/plphys/kiae295

Radoeva, T., Lokerse, A.S., Llavata-Peris, C.I., Wendrich, J.R., Xiang, D., Liao, C.Y., Vlaar, L., Boekschoten, M., Hooiveld, G., Datla, R., et al. (2019). A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 31:52–67. https://doi.org/10.1105/tpc.18.00518

Ueda, M., Aichinger, E., Gong, W., Groot, E., Verstraeten, I., Vu, L.D., De Smet, I., Higashiyama, T., Umeda, M., and Laux, T. (2017). Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes Dev. 31:617–627. https://doi.org/10.1101/gad.292409.116

Woudenberg, S., Hadid, F., Weijers, D., & Borassi, C. (2024). The maternal embrace: the protection of plant embryos. Journal of Experimental Botany, Vol. 75, No. 14 pp. 4210–4218. https://doi.org/10.1093/jxb/erae071

Yoshida, S., van der Schuren, A., van Dop, M., van Galen, L., Saiga, S., Adibi, M., M€oller, B., ten Hove, C.A., Marhavy, P., et al. (2019). A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat. Plants 5:160–166. https://doi.org/10.1038/s41477-019-0363-6

Zhang, M., Wu, H., Su, J., Wang, H., Zhu, Q., Liu, Y., Xu, J., Lukowitz, W., and Zhang, S. (2017). Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant J. 92:1005–1019. https://doi.org/10.1111/tpj.13737

Downloads

Published

2026-01-03