STRUKTUR PERKEMBANGAN DASAR TUMBUHAN : STUDI EMBRIOGENESIS PADA EMBRIO ARABIDOPSIS
DOI:
https://doi.org/10.23969/jp.v10i04.39972Keywords:
Plant Development, Embryogenesis, Arabidopsis.Abstract
Embryogenesis in angiosperms is a critical phase that determines the success of seed development and subsequent plant viability. The analysis shows that embryogenesis proceeds through coordinated stages that include zygote formation, tissue differentiation at the dermatogen and globular stages, and the formation of the shoot apical meristem (SAM), root apical meristem (RAM), and cotyledons at the heart stage. The seed coat, derived from maternal tissue, also undergoes functional differentiation, including the formation of secondary cell walls and the accumulation of protective metabolites such as flavonoids. A comprehensive analysis indicates that Arabidopsis embryogenesis is an integrative process controlled by genetic regulation, interactions between seed compartments, and interdependent metabolic and structural controls. These findings confirm that successful embryo development depends not only on morphogenesis but also on the coordination between the embryo, endosperm, and testa in forming a vigorous and adaptive seed.
Downloads
References
Armenta, A., Medina., Gillmor, C. S., Gao, P., Mora, J., & Macias. (2020). Developmental and genomic architecture of plant embryogenesis: from model plant to crops. Plant Communications 2, 100136. https://doi.org/10.1016/j.xplc.2020.100136
Baud, S., and Lepiniec, L. (2010). Physiological and developmental regulation of seed oil production. Prog. Lipid Res. 49:235–249. https://doi.org/10.1016/j.plipres.2010.01.001
Baskin CC, & Baskin JM. Seeds: ecology, biogeography, and evolution of dor-mancy and germination. 2nd ed. San Diego: Academic Press/Elsevier; 2014.
Baskin CC, & Baskin JM. The rudimentary embryo: an early angiosperm invention that contributed to their dominance over gymno-sperms. Seed Sci Res. 2023:33(2):1–12. https://doi.org/10.1017/S0960258523000168
Bayer, M., Nawy, T., Giglione, C., Galli, M., Meinnel, T., and Lukowitz, W. (2009). Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488. https://doi.org/10.1126/science.1167784
Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and J€urgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. https://doi.org/10.1038/nature02085
Goldberg, R.B., de Paiva, G., and Yadegari, R. (1994). Plant embryogenesis: zygote to seed. Science 266:605–614. https://science.sciencemag.org/content/266/5185/605
Haughn, G., and Chaudhury, A. (2005). Genetic analysis of seed coat. development in Arabidopsis. Trends Plant Sci. 10:472–477. https://doi.org/10.1016/j.tplants.2005.08.005
Lepiniec, L., Debeaujon, I., Routaboul, J.-M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57:405–430. https://doi.org/10.1146/annurev.arplant.57.032905.105252
Leprince, O., Pellizzaro, A., Berriri, S., and Buitink, J. (2017). Late seed maturation: drying without dying. J. Exp. Bot. 68:827–841. https://doi.org/10.1093/jxb/erw363
Meinke, D.W. (2019). Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 306–325 https://doi.org/10.1111/nph.16071
Olsen, O.A. (2004). Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:214–228. https://doi.org/10.1105/tpc.017111
Reiser, L., & Fischer, R.L. (1993). The ovule and the embryo sac. Plant Cell. 5 : 1291–1301. https://doi.org/10.1105/tpc.5.10.1291
Robert, H.S., Park, C., Gutie` rrez, C.L., Wo´ jcikowska, B., Pencı´k, A., Nova´ k, O., Chen, J., Grunewald, W., Dresselhaus, T., Friml, J., et al. (2018). Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 4:548–553. https://doi.org/10.1038/s41477-018-0204-z
Robil, Janlo M. & Cao, Dechang. (2024). Visualizing embryogenesis in the seed. Plant Physiology, 2024, 196, 7–9. https://doi.org/10.1093/plphys/kiae295
Radoeva, T., Lokerse, A.S., Llavata-Peris, C.I., Wendrich, J.R., Xiang, D., Liao, C.Y., Vlaar, L., Boekschoten, M., Hooiveld, G., Datla, R., et al. (2019). A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 31:52–67. https://doi.org/10.1105/tpc.18.00518
Ueda, M., Aichinger, E., Gong, W., Groot, E., Verstraeten, I., Vu, L.D., De Smet, I., Higashiyama, T., Umeda, M., and Laux, T. (2017). Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes Dev. 31:617–627. https://doi.org/10.1101/gad.292409.116
Woudenberg, S., Hadid, F., Weijers, D., & Borassi, C. (2024). The maternal embrace: the protection of plant embryos. Journal of Experimental Botany, Vol. 75, No. 14 pp. 4210–4218. https://doi.org/10.1093/jxb/erae071
Yoshida, S., van der Schuren, A., van Dop, M., van Galen, L., Saiga, S., Adibi, M., M€oller, B., ten Hove, C.A., Marhavy, P., et al. (2019). A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat. Plants 5:160–166. https://doi.org/10.1038/s41477-019-0363-6
Zhang, M., Wu, H., Su, J., Wang, H., Zhu, Q., Liu, Y., Xu, J., Lukowitz, W., and Zhang, S. (2017). Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant J. 92:1005–1019. https://doi.org/10.1111/tpj.13737
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Pendas : Jurnal Ilmiah Pendidikan Dasar

This work is licensed under a Creative Commons Attribution 4.0 International License.
















