ANALISIS SENTIMEN PADA PENGGUNA APLIKASI DANA MENGGUNAKAN METODE LSTM DAN BERT UNTUK MENINGKATKAN PENGGUNA APLIKASI DANA

Authors

  • Winarni Magister Teknik Informatika, Pasca Sarjana Universitas Pamulang
  • Achmad Hindasyah Magister Teknik Informatika, Pasca Sarjana Universitas Pamulang
  • Tumpal Sahala Sirait Magister Teknik Informatika, Pasca Sarjana Universitas Pamulang

DOI:

https://doi.org/10.23969/jp.v10i04.37457

Keywords:

Sentiment Analysis, Digital Wallet, DANA, Google Play Store, NLP, IndoBERT, LSTM-BERT, Machine Learning.

Abstract

Sentiment analysis is an important computational technique used to identify opinions and perceptions expressed by users through textual reviews on digital platforms. This research aims to conduct sentiment analysis on user reviews of the DANA digital wallet application collected from the Google Play Store. The dataset was systematically obtained through a web scraping process, resulting in thousands of review entries as the primary data source. The text data underwent several preprocessing stages, including case folding, cleansing, slang normalization, stopword removal, and tokenization, to produce clean and structured text suitable for modeling. The sentiment classification model employed in this study is the LSTM-BERT architecture, in which IndoBERT is utilized to generate contextual word representations based on the Transformer mechanism, while LSTM is used to capture sequential patterns within the textual data. The model was trained using training data and evaluated using validation and testing datasets. Model performance was assessed using accuracy, precision, recall, F1-score metrics, and confusion matrix visualization. The experimental results indicate that the proposed model achieved an accuracy of 0.70, a weighted average F1-score of 0.67, and a macro average F1-score of 0.58. The model performed well in identifying positive and negative sentiment classes, while performance on the neutralclass remained relatively low due to dataset imbalance issues. These findings demonstrate that the LSTM-BERT model is effective for sentiment classification in Indonesian-language review data from fintech applications, although further improvements are required, particularly in addressing class imbalance to enhance overall model performance.

Downloads

Download data is not yet available.

References

Akbar, I., & Faisal, M. (2022). Perbandingan Analisis Sentimen PLN Mobile: MachineLearning vs. Deep Learning. Journal of Information Technology and ComputerScience, 7(1), 1–10.

Anbi Fahrezi, I., Rudiman, & Azmi Verdikha, N. (2024). Analisis Sentimen TwitterAtas Isu Hak Angket Menggunakan Pembobotan TF-IDF dan Algoritma SVM.Sci-Tech Journal, 3(2), 179–192.

Atmaja, R. M. R. W. P. K., & Yustanti, W. (2021). Analisis Sentimen Customer ReviewAplikasi Ruang Guru dengan Metode BERT (Bidirectional EncoderRepresentations from Transformers). JEISBI, 2(3), 2021.

Baba, U. R. H. (2024). Analisa Sentimen Menjelang Pemilihan Umum Presideen 2024di Indonesia Menggunakan Perbandingan Performa Support Vector Machine(SVM) dan Naïve Bayes. INNOVATIVE: Journal Of Social Science Research,4(3), 11972–11990.

Hardjita, P. W., Nurochman, & Hidayat, R. (2022). Sentiment Analysis of Tweets onPrakerja Card using Convolutional NeuralNetwork and Naive Bayes. IJID(International Journal on Informatics for Development), 10(2), 82–91.https://doi.org/10.14421/ijid.2021.3007

Iwandini, I., Triayudi, A., & Soepriyono, G. (2023). Analisa Sentimen PenggunaTransportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayesdan K-Nearest Neighbor. Journal of Information System Research (JOSH), 4(2),543–550.https://doi.org/10.47065/josh.v4i2.2937

Kulsum, U., Jajuli, M., & Sulistiyowati, N. (2022). Analisis Sentimen Aplikasi WETVdi Google Play Store Menggunakan Algoritma Support Vector Machine. InJournal of Applied Informatics and Computing (JAIC) (Vol. 6, Issue 2).http://jurnal.polibatam.ac.id/index.php/JAIC

Lestari, A., Irma Purnamasari, A., Bahtiar, A., & Tohidi, E. (2025). Sentiment Analysisto Classify Tiktok Shop Users on Twitter with Naïve Bayes Classifier Algorithm.Journal of Artificial Intelligence and Engineering Applications, 4(2), 2808–4519.https://ioinformatic.org/UNIVERSITAS PAMULANG 87

Martiani, D. P., Bachrudin, A., & Suprijadi, J. (2022). Analisis Sentimen UlasanAplikasi Mobile JKN pada Masa Pandemi dengan Metode Bidirectional-LSTM.BIAStatistics : Jurnal Statistika Teori dan Aplikasi : Biomedics, Industry &Business And Social Statistics, 1(1), 98–106. http://prosiding.statistics.unpad.ac.id

Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Analisis SentimenTerhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan SupportVector Machine (SVM). MALCOM: Indonesian Journal of Machine Learning andComputer Science, 4(2), 375–384. https://doi.org/10.57152/malcom.v4i2.1206

Musfiroh, Tholib, A., & Arifin, Z. (2024). Analisis Sentimen Terhadap Ulasan AplikasiShopee di Google Play Store Menggunakan Metode TF-IDF dan Long Short-TermMemory (LSTM). Journal homepage: Journal of Electrical Engineering andComputer (JEECOM), 6(2), 371–381. https://doi.org/10.33650/jeecom.v4i2

Nahumury, A. J., Manongga, D., & Iriani, A. (2022). Analysis Sentiment On AirlineCustomer Saisfaction Using Reccurent Neural Network. Eduvest-Journal ofUniversal Studies, 2(10), 2119–2129. http://eduvest.greenvest.co.id

Putra, B. A., Kristian, Y., Setiawan, E. I., & Santoso, J. (2022). Aspect based SentimentAnalysis Aduan Mahasiswa UMSIDA Dimasa Pandemi Menggunakan LSTM.Journal of Intelligent System and Computation, 4(1), 45–54.https://doi.org/10.52985/insyst.v4i1.229

Shidqi, F., & Yudha Febrianta, M. (2023). Analisis Kualitas Layanan Internet MetodeAnalisis Menggunakan Modelling. SEIKO : Journal of Management & Business,6(2), 439–450.

Downloads

Published

2025-12-06