IMPLEMENTASI DEEP REINFORCEMENT LEARNING UNTUK PENGEMBANGAN AGEN GAME DODGEBALL MENGGUNAKAN UNITY ML-AGENTS

Authors

  • Dzaky Fiantino Universitas Riau, Indonesia
  • T. Yudi Hadiwandra Universitas Riau, Indonesia

DOI:

https://doi.org/10.23969/jp.v10i04.36072

Keywords:

Deep Reinforcement Learning, Dodgeball, Game, Unity ML-Agents, Self-play

Abstract

The gaming industry has grown rapidly, and one of the key elements in a game is the non-playable character (NPC). Easily predictable NPC behavior often reduces player engagement and satisfaction. Static or unresponsive NPCs tend to create monotonous and less challenging gameplay experiences, ultimately lowering game quality and player interest. This study applies Deep Reinforcement Learning (DRL) using Unity ML-Agents to train agents in a Dodgeball game, enabling them to make adaptive decisions through self-play. A reward system was designed to provide positive feedback for strategic actions, such as picking up and throwing the ball, and penalties for mistakes, such as hitting walls or being hit by the ball. The training results showed a gradual improvement in agent performance, reflected in the increasing and stable cumulative rewards and ELO scores at the end of training. In performance testing, the DRL agent achieved a 66% win rate against the rule-based agent over 50 matches. A user preference test also revealed that 80% of players preferred competing against the DRL agent, with 60% of them considering it more challenging than the rule-based one. These results demonstrate that the DRL agent not only outperforms the rule-based agent but also provides a more dynamic and realistic gameplay experience.

Downloads

Download data is not yet available.

References

Arsyad, R., & Rachmawati, D. (2022). Penerapan Deep Reinforcement Learning untuk Pengembangan Agen Cerdas pada Game RPG Berbasis Unity. Jurnal Ilmu Komputer dan Aplikasi, 10(1), 50–59.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. Advances in Neural Information Processing Systems, 30.

Han, S., Lee, J., & Kim, Y. (2020). Multi-Agent Reinforcement Learning in Unity-based Environments. Journal of Simulation and Gaming, 15(3), 211-225.

Indrawan, R., & Fajri, A. (2021). Perancangan Agen Game Berbasis AI Menggunakan Unity ML-Agents. Jurnal Ilmu Komputer Terapan, 4(2), 45–52.

Isnain, A. A., Febrian, R., & Pramudito, S. (2021). Implementasi Deep Reinforcement Learning dengan Unity ML-Agents pada Game 3D Sederhana. Jurnal Teknologi dan Sistem Komputer, 9(3), 239–246.

Juliani, A., Berges, V. P., Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange, D. (2018). Unity: A general platform for intelligent agents.

Lample, G., & Chaplot, D. S. (2016). Playing FPS games with deep reinforcement learning. https://doi.org/10.1609/aaai.v31i1.10827

Lee, H., Kim, Y., & Cho, K. (2021). Learning Dodgeball Strategies via Multi-Agent Reinforcement Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

Nugroho, F. H., & Ramadhan, T. M. (2020). Implementasi Reinforcement Learning pada Game Snake Menggunakan Unity. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(4), 861–869.

Prasetyo, M. D., & Irawan, A. (2023). Pemanfaatan Unity ML-Agents untuk Melatih Agen dalam Game Strategi. Jurnal Sains dan Teknologi Komputer, 6(2), 101–108.

Silva, D., & Ribeiro, A. (2021). Enhancing NPC behavior for better player experience in video games. Journal of Game Design, 15(2), 45-58.

Siu, H. C., Pena, J. D., Chen, E., Zhou, Y., Lopez, V. J., Palko, K., Chang, K. C., & Allen, R. E. (2021). Evaluation of human–AI teams for learned and rule-based agents in Hanabi. https://doi.org/10.48550/arXiv.2107.07630

Tan, M., Wang, L., Liu, Q., Zhao, D., & Zhang, J. (2018). Self-play for reinforcement learning.

Troy, M., Ferreira, J. C., & Figueiredo, R. (2024). Using provenance data and imitation learning to train human-like bots. Entertainment Computing, 47, 100539. https://doi.org/10.1016/j.entcom.2023.100539

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354.

Wang, S., Luo, Y., & Lin, H. (2021). Self-Play Reinforcement Learning for Multi-Agent Combat Games. IEEE Transactions on Games, 13(4), 211–220.

Wijaya, R., & Lestari, S. D. (2022). Pengembangan Agen AI dalam Permainan Dodgeball Menggunakan Deep Reinforcement Learning dan Unity ML-Agents. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(2), 157–166.

Wiratama, A., Sutanto, G., & Sari, M. (2023). The impact of NPC behavior on player engagement in interactive games. International Journal of Game Studies, 9(1), 112-126.

Zhang, Y., Chen, H., & Zhou, F. (2020). Multi-Agent Reinforcement Learning in a Competitive Dodgeball Environment. International Conference on Autonomous Agents and Multiagent Systems.

Zhang, Y., Chen, X., & Wang, H. (2021). Dodgeball AI: Training Competitive Agents using DRL. International Journal of Game-Based Learning, 11(2), 34-45.

Downloads

Published

2025-12-31