PEMANFAATAN PEMANFAATAN DASHBOARD LEARNING ANALYTICS DALAM MOBILE LEARNING UNTUK MENDUKUNG PENGAMBILAN KEPUTUSAN GURU DALAM PERSONALISASI PEMBELAJARAN
DOI:
https://doi.org/10.23969/jp.v10i04.35073Keywords:
Keywords: learning analytics, personalized learning, mobile learning, dashboard systemAbstract
ABSTRACT
This study aims to analyze the use of learning analytics dashboards in mobile learning as a basis for teachers’ decision-making in personalizing learning. A mixed-method approach with a dominant descriptive quantitative design was applied to obtain comprehensive insights combining measurable and in-depth data. The study involved 30 elementary school teachers in Pekanbaru who had implemented mobile learning for one year. Research instruments included digital log data, questionnaires, and semi-structured interview guides. Data were analyzed using descriptive statistics and thematic analysis, while validity was ensured through expert judgment and triangulation. The results showed that the dashboard effectively visualized students’ engagement and performance data in real-time, supporting teachers in identifying learning needs and providing adaptive feedback. The system obtained an average usability score of 87% (very feasible) and a reliability coefficient (Cronbach’s Alpha) of 0.84. These findings emphasize the importance of data-driven approaches in optimizing mobile learning environments and enhancing personalized instruction. Future research is recommended to expand the use of predictive analytics to further strengthen learning personalization.
ABSTRAK
Penelitian ini bertujuan untuk menganalisis penggunaan dashboard learning analytics dalam mobile learning sebagai dasar pengambilan keputusan pendidik dalam melakukan personalisasi pembelajaran. Pendekatan penelitian yang digunakan adalah campuran dengan dominasi kuantitatif deskriptif untuk memperoleh gambaran komprehensif melalui penggabungan data terukur dan mendalam. Subjek penelitian melibatkan 30 pendidik sekolah dasar di Kota Pekanbaru yang telah menerapkan mobile learning selama satu tahun. Instrumen penelitian terdiri atas log data digital, kuesioner, dan pedoman wawancara semi terstruktur. Data dianalisis menggunakan statistik deskriptif dan analisis tematik, dengan validitas dijamin melalui expert judgment dan triangulasi. Hasil penelitian menunjukkan bahwa dashboard efektif memvisualisasikan data keterlibatan dan kinerja peserta didik secara real-time, membantu pendidik dalam mengidentifikasi kebutuhan belajar serta memberikan umpan balik adaptif. Sistem memperoleh skor kebergunaan rata-rata 87% (kategori sangat layak) dengan koefisien reliabilitas Cronbach’s Alpha sebesar 0,84. Temuan ini menegaskan pentingnya pendekatan berbasis data dalam mengoptimalkan lingkungan mobile learning dan memperkuat personalisasi pembelajaran
Downloads
References
Alfredo, J. (2024). Human-centered design in learning analytics dashboards: Enhancing pedagogical decision-making. Journal of Educational Technology and Learning Science, 18(2), 112–128.
Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
Ghozali, I. (2021). Aplikasi analisis multivariate dengan program IBM SPSS 26. Semarang: Badan Penerbit Universitas Diponegoro.
Herodotou, C., Rienties, B., Verdin, B., & Boroowa, A. (2023). Learning analytics in higher education: Current trends and future directions. Computers & Education, 196, 104673. https://doi.org/10.1016/j.compedu.2023.104673
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics for study success: Reflections on current empirical findings. Cham: Springer.
Ifenthaler, D., & Yau, J. Y.-K. (2023). Utilising learning analytics for personalised mobile learning: Challenges and opportunities. British Journal of Educational Technology, 54(1), 24–38.
Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2022). Awareness is not enough: Pitfalls of learning analytics dashboards in the educational practice. International Journal of Learning Analytics, 9(3), 45–62.
Mandinach, E. B., & Gummer, E. S. (2025). Data-driven decision making for educators: Using data to inform practice. New York: Routledge.
Mavrikis, M., Rienties, B., & Holmes, W. (2022). Teacher dashboards and data literacy: Understanding educators’ decision-making with learning analytics. Learning, Media and Technology, 47(1), 33–49.
Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). Thousand Oaks, CA: SAGE Publications.
Prieto, L. P., Rodríguez-Triana, M. J., Martínez-Monés, A., Asensio-Pérez, J. I., & Dimitriadis, Y. (2020). Contextual factors influencing learning analytics adoption in schools: A cross-cultural perspective. Educational Technology Research and Development, 68(5), 2745–2763.
Ramaswami, M. (2023). Evaluating the effectiveness of learning analytics dashboards in higher education. International Review of Research in Open and Distributed Learning, 24(1), 89–105.
Siemens, G., & Baker, R. S. (2022). Learning analytics and educational data mining: Towards communication and collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ’12), 252–254. ACM.
Siemens, G., & Long, P. (2021). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 65(5), 639–655.
Sugiyono. (2019). Metode penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta.
Susnjak, T., & Ramaswami, M. (2022). A systematic review of learning analytics dashboards: From descriptive to prescriptive insights. Journal of Learning Analytics, 9(1), 1–23.
Vygotsky, L. S. (2021). Mind in society: The development of higher psychological processes (Reprint ed.). Cambridge, MA: Harvard University Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pendas : Jurnal Ilmiah Pendidikan Dasar

This work is licensed under a Creative Commons Attribution 4.0 International License.
















