TINJAUAN SISTEMATIS ANALISIS SENTIMEN DENGAN METODE PRISMA (2021–2025)
DOI:
https://doi.org/10.23969/jp.v10i03.34012Keywords:
Sentiment analysis, text mining, PRISMAAbstract
This study presents a systematic review of sentiment analysis research conducted between 2021 and 2025 using the PRISMA method. From searches across three databases, namely Google Scholar, Semantic Scholar, and Garuda, a total of 12,089 articles were identified and then filtered down to 30 selected studies. The aim of this study is to identify the methods, algorithms, data sources, and accuracy levels used in sentiment analysis research. The findings indicate that the Naïve Bayes algorithm is the most widely applied, followed by SVM, while other algorithms such as KNN, Random Forest, Logistic Regression, and CNN were used only in limited cases. These findings highlight that sentiment analysis remains largely directed toward digital and social media issues, with classical algorithms such as Naïve Bayes and SVM continuing to be the main choices due to their ease of implementation and competitive accuracy.
Downloads
References
Luthfika Fairuz, A., Dias Ramadhani, R., Annisa, N., & Tanjung, F. (2021). Analisis Sentimen Rekayasa Data Institut Teknologi Telkom Purwokerto. Data Institut Teknologi Telkom Purwokerto, 1(1), 10–12. http://journal.ittelkom-pwt.ac.id/index.php/dinda
Mufidah, F. S., Winarno, S., Alzami, F., Udayanti, E. D., & Sani, R. R. (2022). Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier. JOINS (Journal of Information System), 7(1), 14–25. https://doi.org/10.33633/joins.v7i1.5883
Nurtikasari, Y., Syariful Alam, & Teguh Iman Hermanto. (2022). Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes. INSOLOGI: Jurnal Sains Dan Teknologi, 1(4), 411–423. https://doi.org/10.55123/insologi.v1i4.770
Perdana, A., Hermawan, A., & Avianto, D. (2022). Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(2), 195–200. https://doi.org/10.32736/sisfokom.v11i2.1412
Pratama Putra, A., Pratama, Y., Kharisma Krisnadi, E., Purnamasari, I., & Dwi Saputra, D. (2022). Text Mining untuk Sentimen Analisis dengan Metode Naïve Bayes, SMOTE, N-Gram dan AdaBoost Pada Twitter CommuterLine. Jurnal Sains Komputer & Informatika (J-SAKTI), 6(2), 961–973.
Pratiwi, R. W., H, S. F., Dairoh, D., Af’idah, D. I., A, Q. R., & F, A. G. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 4(1), 40–46. https://doi.org/10.20895/inista.v4i1.387
Ridwansyah, T. (2022). Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. KLIK: Kajian Ilmiah Informatika Dan Komputer, 2(5), 178–185. https://doi.org/10.30865/klik.v2i5.362
Ryandi, F. A., Pratiwi, D., & Sari, S. (2025). Analisis Sentimen Masyarakat Di Media Sosial X Terhadap Kemenkes Dengan Naive Bayes dan SVM. Jurnal Sains Dan Teknologi, 7(1), 1–6. https://doi.org/10.47080/simika.v8i1.3624
Safitri, T., Umaidah, Y., & Maulana, I. (2023). Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 7(1), 28–35. https://doi.org/10.30871/jaic.v7i1.5039
Sholeha, E. W., Yunita, S., Hammad, R., Hardita, V. C., & Kaharuddin, K. (2022). Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 3(4), 203–208. https://doi.org/10.35746/jtim.v3i4.178
Singgalen, Y. A. (2022). Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 4(3). https://doi.org/10.47065/bits.v4i3.2486
Styawati, S., Hendrastuty, N., & Isnain, A. R. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870
Susilawati, A. T., Lestari, N. A., & Nina, P. A. (2024). Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes. Nian Tana Sikka : Jurnal Ilmiah Mahasiswa, 2(1), 26–35. https://doi.org/10.59603/niantanasikka.v2i1.240
Ulya, S., Ridwan, A., Cholid Wahyudin, W., & Hana, F. M. (2022). Text Mining Sentimen Analisis Pengguna Aplikasi Marketplace Tokopedia Berdasar Rating dan Komentar Pada Google Play Store. Jurnal Bisnis Digital Dan Sistem Informasi, 33–40. https://ejr.umku.ac.id/index.php/BIDISFO/article/view/1799
Yolanda, N., Santi, I. H., & Permadi, D. F. H. (2022). Analisis Sentimen Analisis Sentimen Popularitas Aplikasi Moodle dan Edmodo Menggunakan Algoritma Support Vector Machine. Jurnal Algoritme, 3(1), 48–59. https://doi.org/10.35957/algoritme.v3i1.3313
Yuliska, Qudsi, D. H., Lubis, J. H., Syaliman, K. U., & Najwa, N. F. (2021). Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Sentiment Analysis in the Student ’ S Reviews of College Department Performance Using. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(5), 1067–1076. https://doi.org/10.25126/jtiik.202184842
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pendas : Jurnal Ilmiah Pendidikan Dasar

This work is licensed under a Creative Commons Attribution 4.0 International License.
















