TRANSFORMASI LITERASI SAINS MELALUI SIMULASI LANGIT DIGITAL: STUDI PADA MAHASISWA PENDIDIKAN GURU SEKOLAH DASAR

Authors

  • Golden R.S.C Ayomi Universitas Cenderawasih
  • Aisyah Ali Universitas Cenderawasih
  • Sarah Ohee Universitas Cenderawasih

DOI:

https://doi.org/10.23969/jp.v10i04.33430

Keywords:

scientific literacy, Stellarium, PGSD students, astronomy learning, visual simulation

Abstract

Scientific literacy is an essential competency for prospective elementary school teachers in designing meaningful learning experiences based on scientific reasoning. However, many PGSD students still experience difficulties in explaining scientific phenomena, assessing investigation designs, and interpreting data or evidence, especially on astronomical topics that are abstract and prone to misconceptions. This study aims to evaluate the effectiveness of using the planetarium software Stellarium in improving students' scientific literacy on the topics of Earth's rotation, revolution, and lunar phases. The method used was a quasi-experimental pretest–posttest design in two whole-class groups, where the experimental group received dynamic visual simulation-based learning using Stellarium, and the control group followed conventional learning. The results showed that the experimental group had significantly higher scientific literacy scores than the control group (mean 74.49 vs. 64.84; p = 0.010; g ≈ 1.23). The strongest effects occurred in the subprocesses of “explaining phenomena” (g ≈ 1.42) and “interpreting data/evidence” (g ≈ 1.50), while “assessing/designing investigations” showed moderate improvement (g ≈ 0.76). Qualitative data from reflections and interviews confirmed a conceptual shift from common misconceptions (e.g., the causes of seasons or lunar phases) to a coherent, model-based understanding evidenced by visualizations from the simulation. These findings suggest that the use of Stellarium not only improved conceptual accuracy but also strengthened students' ability to connect observations, models, and evidence to explain astronomical phenomena. This study concludes that visual simulation-based learning such as Stellarium is effective in improving the scientific literacy of elementary school teacher (PGSD) students. Implications include the need for systematic integration of evidence-based digital media into the Earth and Space Science curriculum to address misconceptions and strengthen prospective teachers' scientific reasoning skills.

Downloads

Download data is not yet available.

References

Ali, A., Bektiarso, S., Walukow, A. F., & Narulita, E. (2024). Building Inclusive Learning Communities in Multicultural Classrooms: The Role of the CTL Model in Learning Interpersonal Skills. Tafkir: Interdisciplinary Journal of Islamic Education, 5(4), 568–583. https://doi.org/10.31538/tijie.v5i4.1172

Ali, A., Bektiarso, S., Walukow, A. F., Narulita, E., & Kadir, A. (2025). Strengthening Critical Thinking Skills of Prospective Teacher Students through Inquiry Learning in Science Learning: An Explanatory Mixed Methods Study. Jurnal Penelitian Pendidikan IPA, 11(6), 119–129. https://doi.org/10.29303/jppipa.v11i6.11232

Ali, A., Maniboey, L., Megawati, R., Djarwo, C. F., & Listiani, H. (2024). Media Pembelajaran Interaktif (Teori Komprehensif dan Pengembangan Media Pembelajaran Interaktif di Sekolah Dasar). www.buku.sonpedia.com

Bauer, M. W. (2015). Science literacy and beyond. Public Understanding of Science, 24(3), 258–259. https://doi.org/10.1177/0963662515578025

Bertel, S., Sima, J. F., & Lindner, M. (2009). Scalable Representation Structures for Visuo-Spatial Reasoning - Dynamic Explorations into Knowledge Types. National Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/FSS/FSS09/paper/viewFile/955/1206

Bruner, J. S. (1960). The Process of Education. MA: Harvard University Press.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E Instructional Model: Origins and Effectiveness. Colorado Springs: BSCS.

Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th ed.). Routledge. https://doi.org/https://doi.org/10.4324/9781315456539

Cook, D. A., Brydges, R., Brydges, R., Ginsburg, S., Ginsburg, S., & Hatala, R. (2015). A contemporary approach to validity arguments: a practical guide to Kane’s framework. Medical Education, 49(6), 560–575. https://doi.org/10.1111/MEDU.12678

de Oliveira Carneiro, A. C., Paillard, G., Neto, J. P., Vidal, C. A., Cavalcante-Neto, J. B., Leite, A. J. M., & Gomes, A. C. (2024). Virtual Reality in Astronomical Education: Improving the Understanding of Eclipses with Interactive Simulations. 29–30. https://doi.org/10.5753/svr_estendido.2024.244743

Esparza, A. M., Fleming, K., Zhang, H., Pang, H., Guerrero, C., Lara-Alecio, R., Irby, B. J., & Tong, F. (2023). Investigating teachers’ use of literacy-infused science strategies: A mixed methods study. Discover Education, 2(1). https://doi.org/10.1007/s44217-023-00050-1

Fadlah, U., Pursitasari, I. D., & Rubini, B. (2024). Needs Analysis to Develop Learning Media Based on Scientific Literacy. Jurnal Penelitian Pendidikan IPA (JPPIPA), 10(11), 9846–9852. https://doi.org/10.29303/jppipa.v10i11.9190

Fiska, A., Cahyani, F., Rahma, F. A., & Jember, U. (2024). PEMANFAATAN STELLARIUM DALAM PEMBELAJARAN IPA UNTUK MENINGKATKAN MINAT BELAJAR SISWA KELAS VII SMPN 3 SEMPU. Jurnal Ilmiah Pendidikan Dasar, 9.

Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014a). Developing a Measure of Scientific Literacy for Middle School Students. Science Education, 98(4), 549–580. https://doi.org/10.1002/sce.21115

Fives, H., Huebner, W. W., Birnbaum, A. S., & Nicolich, M. (2014b). Developing a Measure of Scientific Literacy for Middle School Students. Science Education, 98(4), 549–580. https://doi.org/10.1002/SCE.21115

Friedman, S. E. (2012). Computational Conceptual Change: An Explanation-Based Approach.

Green, S. B., & Yang, Y. (2015). Evaluation of Dimensionality in the Assessment of Internal Consistency Reliability: Coefficient Alpha and Omega Coefficients. Educational Measurement: Issues and Practice, 34(4), 14–20. https://doi.org/10.1111/EMIP.12100

Grönman, S., Lindfors, E., & Rönkkö, M.-L. (2024). Design thinking in early childhood education and care. A literature review and consideration from the perspective of young learners’ craft, design, and technology education. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-024-09944-z

Grooms, J., Fleming, K., Berkowitz, A. R., & Caplan, B. (2021). Exploring Modeling as a Context to Support Content Integration for Chemistry and Earth Science. Journal of Chemical Education, 98(7), 2167–2175. https://doi.org/10.1021/ACS.JCHEMED.1C00319

Guarrella, C., van Driel, J. H., & Cohrssen, C. S. (2022). Toward assessment for playful learning in early childhood: Influences on teachers’ science assessment practices. Journal of Research in Science Teaching, 60(3), 608–642. https://doi.org/10.1002/tea.21811

Hand, B., Prain, V., Lawrence, C., & Yore, L. D. (1999). A writing in science framework designed to enhance science literacy. International Journal of Science Education, 21(10), 1021–1035. https://doi.org/10.1080/095006999290165

Johnson, C. I., & Mayer, R. E. (2009). A testing effect with multimedia learning. Journal of Educational Psychology.

Kallery, M. (2018). Early-Years Teachers’ Professional Upgrading in Science: a Long-Term Programme. Research in Science Education, 48(2), 437–464. https://doi.org/10.1007/S11165-016-9575-1

Kim, S.-M., Yang, I.-H., & Lim, S. (2013). Analysis of Changes in Elementary Students’Mental Models about the Causes of the Seasonal Change. Journal of the Korean Association for Research in Science Education, 33(5), 893–910. https://doi.org/10.14697/JKASE.2013.33.5.893

Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94. https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C

Lim, A. J.-M., & Cheung, M. W.-L. (2021). Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data. Behavior Research Methods, 1–15. https://doi.org/10.3758/S13428-021-01582-W

Mayer, R. E. (2009). Multimedia learning (2nd ed.). University Press.

Mintz, R., Litvak, S., & Yair, Y. (2001). 3D-Virtual Reality in Science Education: An Implication for Astronomy Teaching. The Journal of Computers in Mathematics and Science Teaching, 20(3), 293–305. https://www.learntechlib.org/primary/p/9543/

OECD. (2022). OECD Transfer Pricing Guidelines for Multinational Enterprises and Tax Administrations 2022. OECD Publishing. https://doi.org/https://doi.org/10.1787/0e655865-en

Owens, D., & Sadler, T. D. (2023). Socio‐scientific issues instruction for scientific literacy: 5E Framing to enhance teaching practice. School Science and Mathematics, 124(3), 203–210. https://doi.org/10.1111/ssm.12626

Putri, F. I. F., Soeparmi, & Sunarno, W. (2020). Analysis of the Preliminary Ability of Scientific Literacy on Temperature and Heat. 930–937. https://doi.org/10.2991/ASSEHR.K.200129.115

Rexigel, E., Kühn, J., Becker-Genschow, S., & Malone, S. (2024). The More the Better? A Systematic Review and Meta-Analysis of the Benefits of More than Two External Representations in STEM Education. Educational Psychology Review, 36(4). https://doi.org/10.1007/s10648-024-09958-y

Riski, Y. (2025). Aplikasi Media Pembelajaran Stellarium untuk Meningkatkan Hasil Belajar Siswa pada Materi Tata Surya kelas VI Sekolah Indonesia Davao, Filipina. https://doi.org/10.17509/md.v20i2.79667

Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921. https://doi.org/10.1002/TEA.20327

Sapp, G. (1992). Science Literacy: A Discussion and an Information-Based Definition. College & Research Libraries, 53(1), 21–30. https://doi.org/10.5860/CRL_53_01_21

Seema, P. V. (2024). Developing scientific literacy to promote 21st century skills. Journal on School Educational Technology, 20(1), 1. https://doi.org/10.26634/jsch.20.1.21018

Shadish, W., Cook, T., & Campbell, D. (2004). Quasi-Experimental Designs for Generalized Causal Inference. In Evaluation and Program Planning - EVAL PROGRAM PLANN (Vol. 27).

Shaffer, J. F., Ferguson, J. E., & Denaro, K. (2019). Use of the Test of Scientific Literacy Skills Reveals That Fundamental Literacy Is an Important Contributor to Scientific Literacy. CBE- Life Sciences Education, 18(3). https://doi.org/10.1187/CBE.18-12-0238

Spoto, A., Nucci, M., Prunetti, E., & Vicovaro, M. (2022). Improving content validity evaluation of assessment instruments through formal content validity analysis. Psychological Methods. https://doi.org/10.1037/met0000545.supp

Suits, J. P., & Diack, M. (2002). Instructional Design of Scientific Simulations and Modeling Software to Support Student Construction of Perceptual to Conceptual Bridges. 2002(1), 1904–1909. https://www.learntechlib.org/primary/p/9905/

Targan, D. M. (1988). The assimilation and accommodation of concepts in astronomy.

Wu, H. K., & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754–767. https://doi.org/10.1007/S10956-011-9363-7

Zednik, C., & Boelsen, H. (2022). Scientific Exploration and Explainable Artificial Intelligence. Minds and Machines, 32(1), 219–239. https://doi.org/10.1007/s11023-021-09583-6

Zubaidah, S., & Arsih, F. (2021). Indonesian culture as a means to study science. AIP Conference Proceedings. https://pubs.aip.org/aip/acp/article-abstract/2330/1/030037/838177

Downloads

Published

2026-01-09