PEMETAAN TREN DAN METODOLOGI ANALISIS SENTIMEN: SEBUAH TINJAUAN LITERATUR

Authors

  • Anastasya Tri Andriani Hidayat Politeknik Imigrasi
  • Priati Assiroj Politeknik Imigrasi
  • Besse Hartati Politeknik Imigrasi

DOI:

https://doi.org/10.23969/jp.v10i04.33375

Keywords:

accuracy, algorithm, data mining, lstm, sentiment analysis

Abstract

The rapid evolution of information and communication technology, driven by progressive development in AI and machine learning, has profoundly transformed sentiment analysis. This study provides a systematic literature review of sentiment analysis methodologies, evaluating their effectiveness across datasets, algorithms, platforms, and accuracy levels. The result indicates that trending topic on social media dominates current research. Moreover, Google Play Store serves as the primary data source, and LSTM is the most widely used algorithm. These findings highlight the necessity of robust methodologies to refine sentiment classification, improve model accuracy, and mitigate biases in text-based data. By identifying prevalent techniques and tools, this study advances sentiment analysis methodologies, facilitating improved data-driven decision-making in fields.

Downloads

Download data is not yet available.

References

Aakash, Gupta, S., & Noliya, A. (2024). URL-Based Sentiment Analysis of Product Reviews Using LSTM and GRU. Procedia Computer Science, 235(2023), 1814–1823. https://doi.org/10.1016/j.procs.2024.04.172

Abighail, B. M. D., Fachrifansyah, Firmanda, M. R., Anggreainy, M. S., Harvianto, & Gintoro. (2023). Sentiment Analysis E-commerce Review. Procedia Computer Science, 227, 1039–1045. https://doi.org/10.1016/j.procs.2023.10.613

Alotaibi, A., Nadeem, F., & Hamdy, M. (2025). Weakly Supervised Deep Learning for Arabic Tweet Sentiment Analysis on Education Reforms : Leveraging Pre-trained Models and LLMs with Snorkel. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2025.3541154

Alsemaree, O., Alam, A. S., Gill, S. S., & Uhlig, S. (2024). Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions. Heliyon, 10(9), e27863. https://doi.org/10.1016/j.heliyon.2024.e27863

Altahir, B. H., Karrar, A. E., & Mohmmed, S. S. (2023). The Impact of Semantic Web and Ontology to Improve E-Government Services: A Systematic Review. Indonesian Journal of Electrical Engineering and Informatics, 11(4), 1082–1096. https://doi.org/10.52549/ijeei.v11i4.5024

Armaeni, P. P., Arya, I. K., Wiguna, G., Gede, W., & Parwita, S. (2024). Sentiment Analysis of YouTube Comments on the Closure of TikTok Shop Using Naïve Bayes and Decision Tree Method Comparison. 1(2), 70–80.

Atmaja, A. I., & Sukmasetya, P. (2024). Analysis of Labeling and Class-Balancing Effects on Clash of Champions Sentiment Using LSTM and BERT. 6(4), 2868–2891. https://doi.org/10.51519/journalisi.v6i4.929

Ba Alawi, A., & Bozkurt, F. (2024). Performance Analysis of Embedding Methods for Deep Learning-Based Turkish Sentiment Analysis Models. Arabian Journal for Science and Engineering, X. https://doi.org/10.1007/s13369-024-09360-4

Bahar, A., Astuti, T., & Arsi, P. (2024). Performance Comparison Of Svm, Naive Bayes, And Logistic Regression Classification Algorithms In Analyzing Noice App User Reviews. Jurnal Teknik Informatika, 5(4). https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/2061

Balit, M. N. B., & Utomo, F. S. (2024). Sentiment Analysis of pegipegi.com Review on Google Play Store with Naïve Bayes. Sistemasi, 13(3), 1044. https://doi.org/10.32520/stmsi.v13i3.3913

Barik, K., Misra, S., Ray, A. K., & Bokolo, A. (2023). LSTM‐DGWO‐Based Sentiment Analysis Framework for Analyzing Online Customer Reviews. Computational Intelligence and Neuroscience, 2023(1). https://doi.org/10.1155/2023/6348831

Bengesi, S., Oladunni, T., Olusegun, R., & Audu, H. (2023). A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets. IEEE Access, 11(January), 11811–11826. https://doi.org/10.1109/ACCESS.2023.3242290

Brandao, J. G., Junior, A. P. C., Pacheco, V. M. G., Rodrigues, C. G., Belo, O. M. O., Coimbra, A. P., & Calixto, W. P. (2025). Optimization of machine learning models for sentiment analysis in social media. Information Science, 694.

Chang, V., Liu, L., Xu, Q., Li, T., & Hsu, C. H. (2023). An improved model for sentiment analysis on luxury hotel review. Expert Systems, 40(2), 1–29. https://doi.org/10.1111/exsy.12580

Dadhich, A., & Thankachan, B. (2022). Sentiment Analysis of Amazon Product Reviews Using Hybrid Rule-Based Approach[1] S. Kemp, “DIGITAL 2022: INDONESIA,” Datareportal, 2022, [Online]. Available: https://datareportal.com/reports/digital-2022-indonesia. Smart Systems: Innovations in Computing. Smart Innovation, Systems and Technologies.

Das, S., Mondal, S., Majerova, J., Vartiak, L., & Vrana, V. G. (2025). Tweet Sentiments: Understanding X (Twitter) Users’ Perceptions of the Russia–Ukrainian Crisis on Consumer Behavior and the Economy. International Journal of Consumer Studies, 49(1). https://doi.org/10.1111/ijcs.70009

Das, T., Samanta, S., Basak, P., Bhowmick, I., Daw, S., & Saha, M. (2024). Rating-Based Sentiment Analysis on Online Mobile Reviews Using VADER Preprocessing. 267–279.

Diekson, Z. A., Prakoso, M. R. B., Putra, M. S. Q., Syaputra, M. S. A. F., Achmad, S., & Sutoyo, R. (2022). Sentiment analysis for customer review: Case study of Traveloka. Procedia Computer Science, 216(2022), 682–690. https://doi.org/10.1016/j.procs.2022.12.184

Gregoriades, A., Pampaka, M., Herodotou, H., & Christodoulou, E. (2023). Explaining tourist revisit intention using natural language processing and classification techniques. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-023-00740-5

Hagi, A., & Rarasati, D. B. (2024). Sentiment Analysis of Sirekap Application Review Using Logistic Regression Algorithm. Jurnal Informatika, 11(2), 55–64. https://doi.org/10.31294/inf.v11i2.22066

Hasanah, K. (2024). Comparison of Sentiment Analysis Model for Shopee Comments on Google Play Store. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 13(1), 21–30. https://doi.org/10.32736/sisfokom.v13i1.1916

Haziq, M. R., Sibaroni, Y., & Prasetyowati, S. S. (2024). WORD EMBEDDING OPTIMIZATION IN SENTIMENT ANALYSIS OF REVIEWS ON MYTELKOMSEL APP USING LONG SHORT-TERM MEMORY AND SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE. Jurnal Teknik Informatika, 5(6).

He, A., & Abisado, M. (2024). Text Sentiment Analysis of Douban Film Short Comments Based on BERT-CNN-BiLSTM-Att Model. IEEE Access, 12(April), 45229–45237. https://doi.org/10.1109/ACCESS.2024.3381515

Hou, J., Liu, W., Cao, Y., Wang, S., & Tang, O. (2024). Evaluating service quality of express logistics service based on online reviews using LDA-LSTM. Journal of Management Science and Engineering, 9(3), 308–327. https://doi.org/10.1016/j.jmse.2024.02.001

Idris, M., Rifai, A., & Tania, K. D. (2025). Sentiment Analysis of Tokopedia App Reviews using Machine Learning and Word Embeddings. 9(1), 210–219.

International Telecommunication Union. (2023). Facts and Figures 2023: Internet USe. https://www.itu.int/itu-d/reports/statistics/2023/10/10/ff23-internet-use/

J, S., & U, K. (2023). Sentiment analysis of amazon user reviews using a hybrid approach. Measurement: Sensors, 27(January), 100790. https://doi.org/10.1016/j.measen.2023.100790

Kaur, G., & Sharma, A. (2023). A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-022-00680-6

Kemp, S. (2024). Internet use in 2024. Internet Use In 2024. https://datareportal.com/reports/digital-2024-deep-dive-the-state-of-internet-adoption

Kurniawan, R., Wijaya, H. O. L., & Aprisusanti, R. P. (2024). Sentiment Analysis of Google Play Store User Reviews on Digital Population Identity App Using K-Nearest Neighbors. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 13(2), 170–178. https://doi.org/10.32736/sisfokom.v13i2.2071

Ningrum, M. P., & Mutia, R. (2025). Sentiment Analysis of Twitter Reviews on Google Play Store Using a Combination of CNN and LSTM Algorithms. 2(January), 107–115.

Nurmakhlufi, A. H., Rafi, M., Arsyad, H., & Mulyani, W. S. (2024). Sentiment Analysis on BNI mobile application review Using K- Nearest Neighbors Algorithm. 8(October), 2490–2502.

Patra, G. K., Kuraku, C., Konkimalla, S., Nagesh, V., Manikanth, B., & Kumar, S. (n.d.). Journal of Artificial Intelligence & Cloud Computing A Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. 2(4), 1–4.

Pradeepa, S., Jomy, E., Vimal, S., Hassan, M. M., Dhiman, G., Karim, A., & Kang, D. (2024). HGATT_LR: transforming review text classification with hypergraphs attention layer and logistic regression. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-70565-6

Purnamasari, D., Aji, A. B., Madenda, S., Wiryana, I. M., & Harmanto, S. (2024). Sentiment Analysis Methods for Customer Review of Indonesia E-Commerce. International Journal of Innovative Computing, Information and Control, 20(1), 47–60. https://doi.org/10.24507/ijicic.20.01.47

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach. Social Network Analysis and Mining, 13(1), 1–14. https://doi.org/10.1007/s13278-023-01030-x

Refianti, R., Mutiara, A. B., & Putra, R. A. (2024). A Lexicon-Based Long Short-Term Memory (LSTM) Model for Sentiment Analysis to Classify Halodoc Application Reviews on Google Playstore. Journal of Applied Data Sciences, 5(1), 146–157. https://doi.org/10.47738/jads.v5i1.160

Rudiyanto, R. A., & Setiawan, E. B. (2024). Sentiment Analysis Using Convolutional Neural Network (CNN) and Particle Swarm Optimization on Twitter. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 188–195. https://doi.org/10.33480/jitk.v9i2.5201

Rusdi Rahman, M., Febri Diansyah, A., & Hanafi, H. (2023). Sentiment Analysis on the Shopee Application on Playstore Using the Random Forest Classification Method. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(1), 20–24. https://doi.org/10.25139/inform.v9i1.5465

Sabir, A., Ali, H. A., & Aljabery, M. A. (2024). ChatGPT Tweets Sentiment Analysis Using Machine Learning and Data Classification. Informatica (Slovenia), 48(7), 103–112. https://doi.org/10.31449/inf.v48i7.5535

Samanmali, P. H. C., Rupasingha, R. A. H., & M. (2024). Sentiment analysis on google play store app users’ reviews based on deep learning approach. Multimedia Tools and Applications, 83.

Santoso, J., Novanto, N. S., Franklin, Y. R., & Madyatmadja, E. D. (2023). Sentiment Analysis on Google Play Store User Reviews of Digital Bank Applications in Indonesia.

Savitri, V. A., Sa’id, M., Husni, H., & Muntasa, A. (2024). A sentiment analysis of madura island tourism news using C4.5 algorithm. Journal of Soft Computing Exploration, 5(1), 9–17. https://doi.org/10.52465/joscex.v5i1.258

Shuqin, H., & Raga, R. C. (2024). A Deep Learning Model for Student Sentiment Analysis on Course Reviews. IEEE Access, September, 136747–136758. https://doi.org/10.1109/ACCESS.2024.3463793

Talaat, A. S. (2023). Sentiment analysis classification system using hybrid BERT models. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-023-00781-w

Tamami, G., Triyanto, W. A., & Muzid, S. (2025). Sentiment Analysis Mobile JKN Reviews Using SMOTE Based LSTM. 19(1), 13–24.

Tamer, M., Khamis, M. A., Yahia, A., Khaled, S. Al., Ashraf, A., & Gomaa, W. (2023). Arab reactions towards Russo-Ukrainian war. EPJ Data Science, 12(1). https://doi.org/10.1140/epjds/s13688-023-00415-4

Tanoto, K., Gunawan, A. A. S., Suhartono, D., Mursitama, T. N., Rahayu, A., & Ariff, M. I. M. (2024). Investigation of challenges in aspect-based sentiment analysis enhanced using softmax function on twitter during the 2024 Indonesian presidential election. Procedia Computer Science, 245, 989–997.

Thomas, R., & Jeba, J. R. (2024). A novel framework for an intelligent deep learning based product recommendation system using sentiment analysis (SA). Automatika, 65(2), 410–424. https://doi.org/10.1080/00051144.2023.2295148

Trisna, K. W., Huang, J., Chen, Y., & Gede Juliana Eka Putra, I. (2025). Dynamic Text Augmentation for Robust Sentiment Analysis: Enhancing Model Performance with EDA and Multi-Channel CNN. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2025.3538621

Valarmathi, B., Gupta, N. S., Karthick, V., Chellatamilan, T., Santhi, K., & Chalicheemala, D. (2024). Sentiment Analysis of Covid-19 Twitter Data using Deep Learning Algorithm. Procedia Computer Science, 235(2023), 3397–3407. https://doi.org/10.1016/j.procs.2024.04.320

Vanaja, S., & Belwal, M. (2018). Aspect-Level Sentiment Analysis on E-Commerce Data. International Conference on Inventive Research in Computing Applications (ICIRCA), 1275–1279. https://doi.org/10.1109/ICIRCA.2018.8597286.

Yadav, V., Katiyar, V., & Verma, P. (2023). Long short term memory (LSTM) model for sentiment analysis in social data for e-commerce products reviews in Hindi language. International Journal of Information Technology, 15, 759–772. https://doi.org/10.1007/s41870-022-01010-y

Yang, X.-S., Sherratt, S., Dey, N., & Amit, J. (2024). Comparative Study of KDD and CRISPS-DM Methodologies for Phishing Identification. International Congress on Information and Communication Technology.

Yarbo, H., Rais, R., & Setiawan, I. (2023). Sentiment Analysis Using Recurrent Neural Network ( Rnn ) Method With Long Short Term Memory ( Lstm ) On Traveloka Application Comment Review. Proceedings of the 5th International Seminar on Science and Technology. https://doi.org/10.2991/978-94-6463-520-1

Downloads

Published

2025-11-20