IMPLEMENTASI JARINGAN SARAF TIRUAN UNTUK MEMPREDIKSI TINGKAT PRODUKSI JAGUNG GILING MENGGUNAKAN METODE BACKPROPAGATION (STUDI KASUS: MIKRA MAKMUR BERSAMA)
DOI:
https://doi.org/10.23969/jp.v9i04.18160Keywords:
artificial neural networks, backpropagation, prediction, corn millingAbstract
This study aims to implement Artificial Neural Networks (ANN) to predict corn flour production levels at the agricultural company Mikra Makmur Bersama using the backpropagation learning method. As a machine learning technique, ANN has the potential to enhance prediction accuracy by effectively analyzing historical data. Data on corn flour production from 2021 to 2023 was collected from the company and used to train the ANN model with a backpropagation architecture. This process involves feedforward and backward propagation to optimize neuron weights, aiming to produce accurate and reliable predictions. The backpropagation algorithm updates weights based on prediction errors and can adapt to complex patterns in the data. The results show that the implemented ANN model successfully predicted corn flour production levels with significant accuracy, as tested with data from 2021 to 2023. This study is expected to serve as a reference for applying ANN technology in other agricultural sectors and encourage the use of advanced methods to enhance efficiency and productivity.Downloads
References
Hermanto, B. (2019). PENERAPAN DATA MINING UNTUK PREDIKSI PENERIMA BANTUAN PANGAN NON TUNAI (BPNT) DI DESA WANACALA MENGGUNAKAN METODE NAÏVE BAYES. SIGMA - Jurnal Teknologi Pelita Bangsa, 18(4), 64–72.
Hutabarat, D., Solikhun, Fauzan, M., Windarto, A. P., & Rizki, F. (2021). Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 2(1), 21–29. https://doi.org/10.37148/bios.v2i1.18
Indah, S., & Setiawan, A. (2011). Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6. ULTIMATICS, III(2), 23–28.
Lestari, Y. D. (2017). JARINGAN SYARAF TIRUAN UNTUK PREDIKSI PENJUALAN JAMUR MENGGUNAKAN ALGORITMA BACKROPAGATION. Jurnal ISD, 2(1), 2477–2863.
Mohammad Noviansyah. (2019). Pengenalan Dasar Matlab. Pengenalan Dasar Matlab.
Prathama, A. Y. (2017). PENDEKATAN ANN (ARTIFICIAL NEURAL NETWORK) UNTUK PENENTUAN PROSENTASE BOBOT PEKERJAAN DAN ESTIMASI NILAI PEKERJAAN STRUKTUR PADA RUMAH SAKIT PRATAMA. Teknos, 7(1).
Prayudha, J., & Mariami, I. (n.d.). Seminar Nasional Sains & Teknologi Informasi (SENSASI) Implementasi Jaringan Syaraf Tiruan Dalam Memprediksi Hasil Perkebunan Dengan Metode Backpropagation.
Putra, G. E., & Fatimah, T. (2023). PENERAPAN ALGORITME NAÏVE BAYES DALAM MEMPREDIKSI JUARA LIGA PRIMER INGGRIS MUSIM 2022 / 2023 IMPLEMENTATION OF NAÏVE BAYES ALGORITHM IN PREDICTING THE CHAMPION OF ENGLISH PREMIER LEAGUE 2022 / 2023 SEASON. Seminar Nasional Mahasiswa Fakultas Teknologi Informasi, 2(1), 658–668.
Rahayu. (2020). Regresi linier untuk prediksi jumlah penjualan terhadap jumlah permintaan . In Kreatif.
Rusdiana, S. (2017). DESIGNING APPLICATION OF ANT COLONY SYSTEM ALGORITHM FOR THE SHORTEST ROUTE OF BANDA ACEH CITY AND ACEH BESAR REGENCY TOURISM BY USING GRAPHICAL USER INTERFACE MATLAB. Jurnal Natural, 17(2).
Sinaga, A. R. (2012). APLIKASI JARINGAN SYARAF TIRUAN UNTUK PENENTUAN KONSENTRASI PROGRAM STUDI BAGI CALON MAHASISWA BARU STMIK BUDIDARMA MEDAN. Pelita Informatika Budi Darma, 3(1), 1–4.
Solikhun. (2017). JARINGAN SARAF TIRUAN UNTUK MEMPREDIKSI TINGKAT PEMAHAMAN SISIWA TERHADAP MATAPELAJARAN DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION. Jurnal Sains Komputer & Informatika, 4(1), 24–36.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pendas : Jurnal Ilmiah Pendidikan Dasar

This work is licensed under a Creative Commons Attribution 4.0 International License.