IMPLEMENTATION OF STEM EDUCATION IN DEVELOPING CRITICAL THINKING SKILLS IN JUNIOR HIGH SCHOOL STUDENTS: SYSTEMATIC LITERATURE REVIEW

Layli Alifia Syamsiandari¹, Sri Wahyuni^{2*}, Sri Rejeki Dwi Astuti³, Siti Shofa Assyifa'ul Qulbi Barid⁴

¹Science Education Faculty of Education University of Jember

²Science Education Faculty of Education University of Jember

³Science Education Faculty of Education University of Jember

⁴Science Education Faculty of Education University of Jember

E-mail Address: <u>1laylialifia88@gmail.com</u>, <u>2*sriwahyuni.fkip@unej.ac.id</u>, 3srirejeki.fkip@unej.ac.id, 4sitishofa@unej.ac.id

ABSTRACT

This study examines the implementation of STEM education in enhancing critical thinking skills among junior high school students. The main issue addressed is the low level of students' critical thinking ability. A Systematic Literature Review (SLR) following the PRISMA procedure was conducted, resulting in 13 relevant articles. The findings show that approaches such as PjBL-STEM, STEM-Design Thinking, flipped classroom, TPACK-STEM, and STEM-R effectively strengthen analysis, evidence evaluation, and problem-solving skills. STEM learning consistently improves students' critical thinking despite challenges such as limited facilities and teacher readiness. The study concludes that STEM education is an effective strategy for developing critical thinking skills in junior high school students.

Keywords: junior high school, stem, thinking skills

ABSTRAK

Penelitian ini mengkaji penerapan pendidikan STEM dalam meningkatkan keterampilan berpikir kritis peserta didik SMP. Permasalahan utama adalah rendahnya kemampuan berpikir kritis siswa. Penelitian ini menggunakan metode Systematic Literature Review (SLR) dengan alur PRISMA dan menghasilkan 13 artikel yang relevan. Hasil kajian menunjukkan bahwa model seperti PjBL-STEM, STEM-Design Thinking, flipped classroom, TPACK-STEM, dan STEM-R efektif dalam melatih analisis, evaluasi bukti, serta pemecahan masalah. Pembelajaran STEM terbukti meningkatkan kemampuan berpikir kritis secara konsisten meskipun terdapat kendala seperti fasilitas terbatas dan kesiapan guru. Penelitian ini menyimpulkan bahwa pendidikan STEM merupakan strategi yang tepat untuk mengembangkan keterampilan berpikir kritis peserta didik SMP.

Kata Kunci: Sekolah Menengah Pertama, STEM, Berpikir Kritis

Volume 10 Nomor 04, Desember 2025

A. Introduction

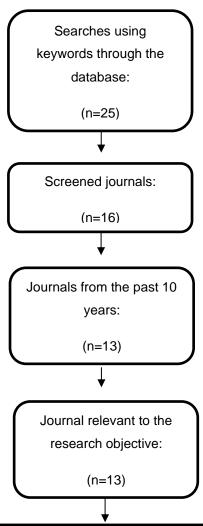
Education at the junior high school level is an important period for students to develop higher-order thinking skills. One of the key skills that needs to be developed is critical thinking, which is the ability to analyze information, evaluate arguments, and make logical and rational decisions. Critical thinking is fundamental to facing challenges in learning and everyday life, so school learning needs to be designed to support the development of this skill (Suandi et al., 2023).

One approach that is believed to support the development of critical thinking skills is STEM (Science, Technology, Engineering, and Mathematics) based learning. STEM education integrates four major solve disciplines real-world to problems through investigation, experimentation, and contextual application of concepts. Through STEM learning, students not only gain conceptual understanding, but are also trained to think logically, construct arguments, and solve problems using creative strategies (Irma et al., 2016)

STEM education is an approach to education in which science,

technology, engineering, and mathematics are integrated into the educational process, focusing solving real-life problems in everyday life and in professional life. As one of the key components of STEM, science focuses on examining natural phenomena through observation and measurement to objectively describe the constanty changing natural world. Technology encompasses human designed innovations developed to modify nature in order to satisfy human needs and preferences (Putra et al., 2021). Engineering involves the knowledge and skills required to obtain and apply scientific, economic, social, and practical principles to design and construct machines, tools, systems, materials, and processes that are economically advantageous environmentally and sustainable. Mathematics concerns the study of patterns and relationships and serves as a foundational language that supports technology, science, and engineering (Suwardi, 2021).

This study aims to provide a comprehensive overview of the implementation of STEM education in developing critical thinking skills among junior high school students. In


addition, the results of this study can also be used as a reference for educators, researchers, and policymakers in designing more effective learning strategies that are tailored to the needs of junior high school students. This study also opens up opportunities for further indepth research related the application of STEM in the context of learning at various levels of education.

B. Research Method

This study focuses on answering research questions formulated based on the objectives of SLR, namely examining the integration of STEM with the development of critical thinking skills in junior high school students. The research questions asked are as follows:

- 1. How does the implementation of STEM learning at the junior high school level support the development of critical thinking skills?
- 2. What are the main findings from previous studies on the relationship between STEM learning and critical thinking skills among junior high school students?

This study used the Systematic Literature Review (SLR) method following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow. PRISMA was chosen because it provides a systematic, transparent, structured framework and for conducting literature reviews so that research results are the more The PRISMA accountable. flow includes four main stages, namely screening, eligibility, identification, and inclusion.

mathematics teachers. The tools integrate digital technology (PowerPoint, video,

and interactive worksheets) to train

critical thinking

Journals that were
reviewed after
elimination and were
relevant to the research
topic

(n=13)

C. Research Results and Discussion

RQ1: How does the implementation of STEM learning at the junior high school level support the development of critical thinking skills?

Table 1 Implementation of STEM Learning at the Junior High School Level

No.	Author	Implementation of STEM Learning at the Junior High School Level		
1	(Maruyama et al., 2022)	STEM learning is implemented through the UML (Unified Modeling Language) programming environment, which trains students to model systems using state machine diagrams. A case study was conducted at a Japanese junior high school on the topic of traffic light control.		
2	(Sridana et al., 2025)	The application of STEM in the form of developing TPACK (Technological Pedagogical Content Knowledge)-based learning tools for junior high school		

		through the
		exploration of
		functional concepts
		and problem solving.
		STEM learning is
		conducted through
		school-industry
		partnerships with
		real-world projects,
		such as designing
		sensors to detect
3	(Anderson,	tree diseases.
3	2012)	Students are
		involved in the
		design process
		(design sprint) and
		think systematically
		to find technological
		solutions.
		Analysis of junior
	(Founds of	high school science
4	(Fayanto et	textbooks based on
	al., 2023)	the integration of
		science, technology,
-		and society.
		Application of
	/\//:lia at al	STEM-based lesson
5	(Wilis et al.,	plans in online
	2023)	science learning
		(topic: inheritance of
		living things)
		Development of
		STEM-based
		mathematics
	(Potnowoti	modules for
e	(Retnowati et al., 2020)	rectangular shapes
6		in junior high school.
		Learning
		emphasizes problem
		solving, projects,
		and contextual
		experiments.
		Integration of STEM
	// A ! (- !	with Design Thinking
7	('Ain et al.,	(STEM-DT) through
-	2025)	a water filtration
		project in junior high
		school.

8	(Salsabila et al., 2024)	Implementation of a simple STEM-based science project with an environmental theme (wastewater treatment using plants).
9	(Topano et al., 2023)	Development of STEM-based learning media in the form of charts (graphic sheets) on plant structure and function in junior high school. The application emphasizes the visualization of scientific concepts integrated with technology and simple engineering.
10	(Sarwi et al., 2024)	Implementation of the STEM-R (Science, Technology, Engineering, Mathematics, and Religion) approach in Islamic boarding school-based junior high schools. Learning integrates Islamic values and science-based project activities to enhance reflection and analysis.
11	(Suyono et al., 2025)	PjBL-STEM has been proven to improve creative and critical thinking skills through authentic and collaborative tasks. Research confirms the importance of integrating PjBL with STEM to strengthen higher-order thinking skills.
12	(Shofatun et al., 2024)	Development of a thematic project-based STEM learning design on "climate change" for eighth-grade junior high school

	students. Using the ADDIE model and		
	on thinking systems.		
	STEM learning is		
	ADDIE model and worksheets based on thinking systems. STEM learning is implemented in the Flipped Classroom model, where students study the material independently before class activities. During learning, students integrate STEM through experiments and contextual discussions on Animalia biology		
	ADDIE model and worksheets based on thinking systems. STEM learning is implemented in the Flipped Classroom model, where students study the material independently before class activities. During learning, students integrate STEM through experiments and contextual discussions on		
(Darmastuti	model, where		
	students study the		
	material		
	independently		
	before class		
,	activities. During		
2025)			
	learning, students		
	_		
	discussions on		
	(Darmastuti et al., 2025)		

Based on thirteen journals, the application of STEM in junior high schools shows a consistent pattern, namely the integration of science, technology, engineering, and mathematics disciplines through realworld problem-solving activities. The most dominant approach is STEMbased Project-Based Learning (PjBL-STEM) because it provides space for students to design solutions, conduct experiments, and evaluate results reflectively. Several other studies apply STEM through programming, digital media, Design Thinking, and even the integration of religious values. This diversity of application demonstrates the flexibility of STEM to adapt to school characteristics and learning materials while remaining based on real-world problems and

(Anderson,

2012)

3

School-industry

collaborative projects

enhance critical thinking skills

because students are confronted with

authentic problems

that do not have a

single answer. They

learn to evaluate evidence, analyze

information, and develop innovative

solutions.

It was found that

science literacy (including critical

thinking) was not yet

optimal because the

material was still

investigative learning. However, several limitations have also been identified, such as teacher readiness, learning facilities, and variations in the quality of implementation.

RQ2: What are the main findings from previous studies on the relationship between STEM learning and critical thinking skills in junior high school students?

Table 2 Key Findings on the Relationship Between STEM and Critical Thinking

	S	kills	4	(Fayanto et	dominated by knowledge aspects.
No.	Author	Key Findings on the Relationship Between STEM and Critical Thinking Skills	7	al., 2023)	The study emphasized the need to integrate the STEM approach so that students could
		The use of UML programming helps			develop scientific and critical thinking skills.
1	(Maruyama et al., 2022)	students understand cause-and-effect relationships and think logically, which is the basis of critical thinking. Students are trained to analyze systems,	5	(Wilis et al., 2023)	STEM learning enhances higher- order thinking skills, including critical and creative thinking, through exploratory and reflective activities.
		predict outcomes, and refine models based on empirical evidence.		(Retnowati	The STEM module significantly improves students' critical thinking skills (N-
	TF cc impro critica	The integration of TPACK-STEM contributes to improving students' critical thinking skills because it requires	6	et al., 2020)	Gain 0.37, moderate category). Students are better able to analyze, evaluate, and relate concepts to real life.
2	(Sridana et al., 2025)	analysis, reflection,	7	('Ain et al., 2025)	The STEM-DT model makes students more analytical and reflective in finding solutions, showing significant improvement in critical and creative thinking due to the stages of empathy,

_				
			ideation, and prototype testing.	
	8	(Salsabila et al., 2024)	STEM project-based learning improves systemic thinking skills that are directly related to critical thinking. There was a 50% improvement in systemic analysis skills after learning.	(Da
	9	(Topano et al., 2023)	STEM-based media has been proven effective in improving students' critical thinking skills. The practicality and effectiveness of the media reached >90%, indicating that students were better able to analyze and connect biological concepts to real- world contexts.	Th show tha consisten has a sigr critical th
	10	(Sarwi et al., 2024)	The integration of STEM with religious values significantly improves students' critical and reflective thinking skills. Students are better able to assess scientific phenomena using scientific approaches and religious ethics.	school st seen in informatio understar relationsh based o combine
	11	(Suyono et al., 2025)	A literature review shows that Project-Based Learning (PjBL) integrated with STEM is effectively implemented in junior high and high schools. Project-based learning activities encourage collaboration, independent research, and realworld problem solving.	exploration have been learning of students' were no of the conditions of the conditi
	12	(Shofatun et al., 2024)	STEM learning improves systematic and critical thinking skills regarding environmental	Ov discussio formulatio

		issues. Students		
		demonstrate		
		improved ability to		
		analyze cause and		
		effect and logically		
		design scientific		
		solutions.		
		This model		
		significantly improves		
	(Darmastuti	critical thinking skills		
13	et al.,	(p < 0.001). Students		
2025)	are more active,			
	2023)	analytical, and able		
		to evaluate scientific		
	information logically.			

he results of the analysis at all of the articles reviewed ntly state that STEM learning inificant positive impact on the hinking skills of junior high tudents. Improvements were the ability to analyze on, evaluate evidence, cause-and-effect nd hips, and make decisions on data. Approaches that projects, scientific on, and digital technology en shown to provide a deep experience that strengthens critical thinking skills. There conflicting findings, so it can cluded that STEM is an approach that consistently s critical thinking skills.

Overall, the results of the discussion of the two problem formulations show that the

implementation of STEM education at the junior high school level contributes strongly and consistently development of students' critical thinking skills. The application of STEM through various models—such PiBL-STEM, as STEM-Design Thinking, TPACK-STEM, flipped classroom, and STEM-R—has a similar pattern, which is to place problem-solving students in real situations that require analysis, evaluation of evidence, and logical reasoning. The findings in RQ1 and RQ2 also reinforce each other in that investigative activities, experiments, and contextual projects are key elements that can encourage significant improvements in critical thinking skills. Thus, it can concluded that the integration of STEM in learning is not only relevant to the demands of a 21st-century skills-based curriculum but also effective in shaping scientific and reflective mindsets in junior high school students.

When examined comprehensively, the two research findings support each other: (1) STEM implementation models that place students as problem solvers, and (2)

outcomes in the form of improved critical thinking skills through investigative, reflective, and projectbased activities. Thus, it can be understood that the quality of critical thinking skills improvement does not depend on a particular model, but on the characteristics of STEM learning namely the integration of itself. science, technology, and solution а design in real-world context. Challenges such as limited facilities, teacher readiness, and curriculum adaptation are still encountered, but consistent findings show that when STEM is implemented with the support of learning tools and teacher guidance, positive effects on critical thinking skills still emerge significantly.

E. Kesimpulan

Based on an analysis of 13 relevant articles, it can be concluded that STEM-based learning consistently plays an important role in improving the critical thinking skills of high school students. junior Approaches such as PiBL-STEM, STEM-Design Thinking, STEM-based flipped classrooms, and TPACK-STEM integration enable students to analyze problems, evaluate evidence, develop scientific solutions and

Volume 10 Nomor 04, Desember 2025

logically. Despite obstacles such as limited facilities and teacher readiness, empirical evidence shows that STEM education is an effective strategy for developing higher-order thinking skills and supporting 21stlearning. STEM century implementation needs be to continuously strengthened teacher training and the provision of adequate facilities to ensure optimal and sustainable learning.

DAFTAR PUSTAKA

- 'Ain, K. N., Winarno, N., Prima, E. C., & Mokhtar, M. (2025). Integrating The STEM-DT Model to Enhance Students' Creative Disposition and Creative Products Through a Water Filtration Project. *Journal of Science Learning*, 8(1), 1–14. https://doi.org/10.17509/jsl.v8i1.78982
- Anderson, D. (2012). Teachers and curriculum salesmen. *Crisis in the Curriculum*, 179–195. https://doi.org/10.4324/97802038 16165-16
- Darmastuti, S., Isfaeni, H., & Komala, R. (2025). STEM-based flipped classroom: Improve students' critical thinking skills and biological literacy in animalia material. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, 11(1), 166–178.
 - https://doi.org/10.22219/jpbi.v11i 1.39804
- Fayanto, S., Sulthoni, S., Wedi, A., Takda, A., & Fadilah, M. (2023). Exploration of Integrated

- Science-Physics Textbooks
 Based on Science Literacy
 Indicators: A Case Study in
 Kendari City Indonesia. *Anatolian Journal of Education*, 8(1), 159–
 172.
 https://doi.org/10.20333/aio.2033
- https://doi.org/10.29333/aje.2023 .8111a
- Irma, E., Davidi, N., Sennen, E., & Supardi, K. (2016). Integrasi Pendekatan STEM (Science , Technology , Enggeenering and Mathematic) Untuk Peningkatan Keterampilan Berpikir Kritis Siswa Sekolah Dasar. *Jurnal Pendidikan Dan Kebudayaan*, 24–31.
- Maruyama, R., Ogata, S., Kayama, M., Tachi, N., Nagai, T., & Taguchi, N. (2022). AN EDUCATIONAL UNIFIED MODELLING LANGUAGE PROGRAMMING ENVIRONMENT AND ITS TWO CASE. (Celda), 139–146.
- Putra, P. D. A., Ahmad, N., Wahyuni, S., & Narulita, E. (2021).
 Analysis of the Factors
 Influencing of Pre-service
 Science Teacher in
 Conceptualization of STEM
 Education: Self-Efficacy and
 Content Knowledge. *Jurnal*Penelitian Pendidikan IPA,
 7(SpecialIssue), 225–230.
 https://doi.org/10.29303/jppipa.v7
 ispecialissue.877
- Retnowati, S., Riyadi, & Subanti, S. (2020). The Stem Approach: the Development of Rectangular. Online Journal of Education and Teaching (IOJET), 7(1), 2–15. Retrieved from http://iojet.org/index.php/IOJET/article/view/704
- Salsabila, M. S., Sanjaya, Y., Eliyawati, E., & Suttiwan, W. (2024). Enhancing Junior High

- School Students' System
 Thinking Competency through
 Water Treatment with Plant
 Modification: A Focus on
 Environmental Pollution. *Journal*of Science Learning, 7(1), 17–24.
 https://doi.org/10.17509/jsl.v7i1.6
 1674
- Sarwi, S., Marwoto, P., Susilaningsih, E., Lathif, Y. F., & Winarto, W. (2024). Science learning STEM-R approach: A study of students' reflective and critical thinking. *Journal of Education and Learning*, 18(2), 462–470. https://doi.org/10.11591/edulearn.v18i2.21080
- Shofatun, A., Herniani, E., & Mardiani, D. (2024). STEM learning design to train student's system thinking skills on climate change. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, 10(1), 234–242.
 - https://doi.org/10.22219/jpbi.v10i 1.29699
- Sridana, N., Soeprianto, H., & Amrullah, A. (2025). Analysis of TPACK Incorporated Learning Devices: An Exploratory Descriptive Study of Mathematics Teachers.

 European Journal of STEM Education, 10(1), 1–14. https://doi.org/10.20897/ejsteme/16757
- Suandi, A., Nurhayati, T., & Santosa, Y. B. P. (2023). Analisis Model Pembelajaran Role Playing Dalam Pembelajaran Sejarah di Jenjang Sekolah Menengah Atas Untuk Meningkatkan Kemampuan Berpikir Reflektif. SINDANG: Jurnal Pendidikan Sejarah Dan Kajian Sejarah, 5(2), 48–52. https://doi.org/10.31540/sindang. v5i2.2473

- SUWARDI, S. (2021). Stem (Science, Technology, Engineering, and Mathematics) Inovasi Dalam Pembelajaran Vokasi Era Merdeka Belajar Abad 21. PAEDAGOGY: Jurnal Ilmu Pendidikan Dan Psikologi, 1(1), 40–48. https://doi.org/10.51878/paedagogy.v1i1.337
- Suyono, S., Tukiran, T., & Yuliaturosida, E. (2025). Exploring Project-Based Learning for Enhancing Creative Thinking in High Schools: A Bibliometric Analysis and Literature Review. Educational Process International Journal, 18(1). https://doi.org/10.22521/edupij.2 025.17.480
- Topano, A., Kurniawan, D., & Saputra, E. A. (2023).
 Developing of STEM-based charta learning media to improve critical thinking ability student on plant structure and function material. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, *9*(3), 462–469.
 https://doi.org/10.22219/jpbi.v9i3. 28352
- Wilis, R., Prayitno, B. A., Sunarno, W., & Anjirawaroj, S. (2023). Improving students' metacognitive abilities and creative thinking skills through STEM-based in online learning. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, *9*(1), 90–102. https://doi.org/10.22219/jpbi.v9i1. 22994