ANALISIS KARAKTERISTIK LAHAN PADA KAWASAN LERENG MARAPI KABUPATEN AGAM

Natasya¹, Ratna Wilis²

1,2Universitas Negeri Padang

Alamat e-mail: tashanatasya135@gmail.com

ABSTRACT

This study aims to determine the characteristics or physical conditions of land in relation to the level of degradation of horticultural land on the slopes of Mount Marapi in Agam Regency. This study uses quantitative methods with a survey and case study approach. Primary and secondary data analysis includes parent material. slope inclination, land conservation measures, soil texture, and land use types. Sampling was conducted using purposive sampling techniques, namely sampling based on specific characteristics in Agam Regency, with priority given to land affected by the Galodo disaster on the slopes of Marapi in Agam Regency. According to the West Sumatra Provincial Water Resources and Construction Agency, the area of agricultural land affected by the eruption reached 3,988.21 hectares, while the area of agricultural land affected by cold lava floods was 89.5 hectares, of which 7.5 hectares was horticultural land. The results of data analysis show that (1) the characteristics or physical conditions of the land affect the level of physical degradation of the land. Low land degradation is found in Sungai Pua village, which has parent rock that is somewhat sensitive and a slope of 8-15% (gentle). The rest are moderate, but those with the highest scores are Bukik Batabuah and Lasi. All villages are dominated by "sensitive" rock types, with Bukik Batabuah and Lasi villages having slope gradients of 45% each, which is considered very steep. The soil texture is dominated by silty clay, and land use with intercropping is the main pattern in all villages.

Keywords: Degradation, Horticulture, Galodo, Marapi Slope

ABSTRAK

Penelitian ini bertujuan untuk mengetahui: Karakteristik atau kondisi fisik lahan terhadap tingkat degradasi lahan Hortikultura kawasan lereng Marapi Kabupaten Agam. Penelitian ini menggunakan metode kuantitatif dengan pendekatan survay dan studi kasus. Analisis data primer dan sekunder berupa bahan induk, kemiringan lereng, tindakan konservasi lahan, tekstur tanah, dan jenis penggunaan lahan. Pengambilan sampel dengan teknik purposive sampling yaitu pengambilan sampel berdasarkan karakteristik tertentu di Kabupaten Agam, serta diutamakan lahan yang terdampak bencana Galodo dilereng Marapi Kabupaten Agam. Menurut Dinas Sumber Daya Air dan Bina Konstruksi Provinsi Sumatera Barat, luas lahan

pertanian yang terdampak erupsi mencapai 3.988,21 hektar sedangkan luas lahan pertanian yang terdampak banjir lahar dingin seluas 89,5 hektar dimana 7,5 hektar merupakan lahan hortikultura. Hasil analisis data memperlihatkan bahwa (1) karakteristik atau kondisi fisik lahan mempengaruhi tingkat degradasi fisik lahan. Degradasi lahan rendah terdapat pada nagari Sungai Pua mempunyai batuan induk termasuk agak peka, kemiringan lereng 8-15% (landai). Selebihnya termasuk sedang, namun yang memiliki skor tertinggi diantaranya Bukik Batabuah dengan dan Lasi. Diseluruh nagari didominasi dengan jenis batuan "peka", kemiringan lereng nagari Bukik Batabuah dan Lasi masing-masing 45% atau termasuk sangat curam. Tekstur tanah didominasi liat berdebu dan pemanfatan lahan dengan pola tanaman tumpang gilir menjadi pola utama diseluruh nagari.

Kata Kunci: Degradasi, Hortikultura, Galodo, Lereng Marapi

A. Pendahuluan

Indonesia merupakan negara berkembang yang ditanadai dengan beberapa hal seperti tingginya pertumbuhan penduduk, infrastruktur yang belum merata dan pendapatan utamanya yang lebih berfokus pada Sektor pertanian. pertanian merupakan penggerak pembangunan (engine of growth) baik dari segi penyedia bahan baku, kesempatan kerja, bahan pangan serta sebagai daya beli produk yang dihasilkan. Berdasarakn data BPS, di Indonesia terdapat PDRB atas harga konstan (ADHK) 2010 menurut Lapangan Usaha mencapai 2,25% (termasuk pertanian, perikanan sektor kehutanan) pada tahun 2022. Salah stau provinsi yaitu Sumatra Barat, yang mana sebagian masyarakatnya bermata pencarian sebagai petani salah satunya yaitu Kabupaten Agam. Hal ini didukung oleh pendapat (Fauzi & Devi, 2024) muenyatakan bahwa Kabupaten Agam memiliki potensi yang besar dalam mengembangkan sektor pertanian sehingga dapat meningkatkan perekonomian.

Menurut Tentua et al.2017 usaha pertanian sangat memerlukan lahan yang sesuai dalam mengembangkan dan mengusahakan tanaman tertentu. Secara ideal lahan yang sesuai merupakan lahan yang sesuai untuk usaha pertanian ialah lahan yang mempunyai kecocokan antara potensi lahan dengan syarat tumbuhan optimal suatu ienis tanaman. dapat disimpulkan bahwa keberhasilan usaha pertanian bergantung pada ketersedian lahan yang sesuai, yaitu lahan yang memiliki keselarasan antara kemampuan lahan dan persyaratan tumbuh tanaman yang akan dikembangkan.

lahan Ketersediaan yang terbatas seiring dengan peningkatan penduduk jumlah yang besar mengakibatkan terjadinya kekurangan lahan. Sejalan dengan pertambahan terjalah penduduk peningkatan kebutuhan hidup, baik secara kuantitatif maupun kualitatif. Sedangkan ketersediaan sumberdaya lahan tetap. Keadaan yang saling bertentangan tersebut dapat meningkatkan tekanan tekanan penduduk atas sumber daya lahan. Hal ini dapat memicu terjadinya degradasi lahan, baik degradasi lahan fisik maupun kimia. (Sitorus, 2004 dalam Hermon, 2012).

Sitorus, (2004) mendefenisikan degradasi lahan sebagai hilangnya atau berkurangnya kegunaan atau (utility) atau potensi kegunaan suatu lahan, hilangnya atau perubahan kenampakan (features) lahan yang tidak dapat diganti. Degradasi lahan dapat diartikan sebagai penurunan fungsi dan karakteristik lahan yang menyebabkan berkurangnya nilai guna lahan secara permanen atau sulit untuk dikembalikan kesuburannya.

Selanjutnya Hermon (2012)mengemukanan bahwa bencana degradasi lahan mengancam serta menggangu kehidupan masyarakat, sehingga mengakibatkan timbulnya korban jiwa manusia, kerusakan lingkungan, kerugian harta benda dan kehilangan sumber hidup serta penghidupan. Berdasarkan uraian tersebut dilihat dapat bahwa degradasi lahan dapat berdampak serius terhdap kehidupan manusia dan lingkunga, menyebabkan kerusakan fisik, kerugian ekonomi, dan hilangnya mata pencaharian masyarakat.

Degradsi lahan tidak hanya berdampak pada manusia namun pada kerusakan fisik lahan berupa banjir, longsor, bencana dan kekeringan lahan karena hilangnya vegetasi penutup lahan. hala sebagai mana terdapat dalam Millennium Ecosystem Assesment (2005) menyatakan bahwa lahan yang terdegradasi lebih rentan terhadap banjir, longsor dan kekeringan lahan karena hilangnya vegetasi penutup lahan.

Seperti halnya bencana erupsi Marapi daerah Agam telah merusak hingga ribuan hektar lahan pertanian. Berdasarkan analisis Badan

Klimatologi Meteorologi, dan Geofisikan (BMKG) bencana ini terjadi karena endapan materialhasil erupsi Gunung Marapi yang ada di lereng Marapi yang kemudian tersapu oleh intensitas hujan dengan sedang hingga lebat (Anggi Devtami, 2025). Berdasarkan hal tersebut dapat disimpulkan bahwa ketikan hujan dengan intensitas sedang hingga lebta turun. air hujan tersebut dan menggerakkan menyapu tumpukan material erupsi, sehingga terjadilah liongsor atau banjir lahan yang menajadi pendorong terjadinya degradasi.

Luas lahan yang terdampak mencapai 3.988,21 hektar di Kabupaten Agam, sedangkan lahan terdampak banjir lahar dingin seluas 89,5 hektar, selain itu lahar dingin Marapi merusak seluas 84,5 hektar lahan di Kabupaten Agam, luas tersebut terdiri dari 7,5 hektar lahan hortikultura,dan 77 hektar lahan padi (dilansir dari sumbarprov.go.id). hal tersebut menujukkan bahwa letusan gunung marapi berupa lahar dingin telah merusak puluhan hektar lahan pertanian terutama lahan hortikultura.

Meskipun material vulkanik kaya akan mineral, waktu yang dibutuhkan untuk mnejadi tanah uang kemabali

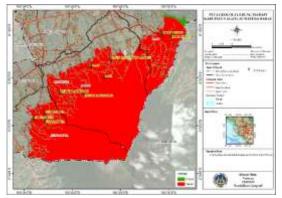
subur cukup lama. Dalam jangkan waktu pendek pertanian di wilayah terdampak cendrung mengalami penurunan produktivitas. Hujan abu dapat menyebabkab tanah menjadi padat, keras, yang menghambat pergerakan akar tanaman. berdasarkan permasalahan diatas, maka peneliti tertarik untuk melakukan penelitian dengan judul "Analisis Tingkat Degradasi Lahan Pertanian Hortikultura Kawasan Lereng Marapi Kabupaten Agam".

B. Metode Penelitian

Penelitian ini menggunakan metode survay dengan jenis penelitian kuantitatif melalaui studi kasus dengan menggunakan teknik purposive sampling sebagai pengambilan sampel dilapangan berdasarkan karakteristik tertentu serta diutamakan lahan yang terdampak bencana Galodo di lereng Marapi Kabupaten Agam.

C.Hasil Penelitian dan PembahasanKondisi Geografis DaerahPenelitian

a. Geologi


Geologi merupakan salah satu parameter yang mempengaruhi terjadinya degradasi lahan. berdasarkan peta geologi, lereng

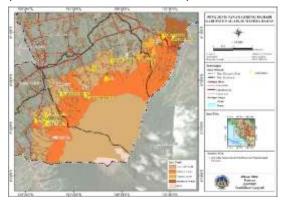
marapi di Kabupaten Agam sebagian besar terdiri dari batuan Qama (Andesit dari gunung Marapi) dan PCks 1 (yang mencakup anggota Filit dan serpih). Untuk lebih jelas dapat dilihat pada peta geologi berikut:

Tabel 1.Tabel Luas Geologi Lereng Marapi

Simbol	Formasi	Luas
Qama	Andesit Gunung Marapi	7253,72792167
PCks1	Anggota Filit dan Serpih	52,9780315147

(Sumber: Data Olahan Peneliti 2025)

Gambar 1.Peta Geologi Lereng Marapi Kab. Agam


b. Jenis Tanah

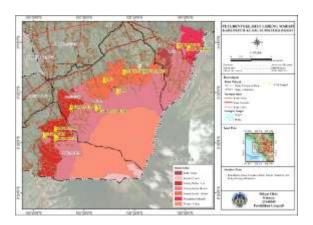
Menurut Joeff seorang pakar tanah Amerika Serikat dalam Dedi Hermon (2009) tanah merupakan bangunan alam yang terususun atas horizonhorizon dari atas bahan mineral dan bahan organik, biasanya tidak padu dan memiliki ketebalan yang berbedabeda. Jenis tanah yang banyak terdapat dilereng marapi berupa Andosol Haplik,dan Gleisol Distrik untuk lebih jelas dapat dilihat pada peta jenis tanah berikut:

Tabel 2. Luas Jenis Tanah Lereng Marapi Kab. Agam

Jenis Tanah	Luas
Andosol Haplik	3939,908861
Kambisol Distrik	372,9144567
Gleisol Distrik	2638,311925
Gleisol Eutrik	211,5454041
ROC	144,0253344

(sumber: Data Olahan Peneliti 2025)

Gambar 2.Peta Jenis Lereng Marapi Kab. Agam


c. Bentuk Lahan

Berdasarkan peta bentuk lahan Kabupaten Agam lereng Marapi Kabupaten Agam memiliki bentuk lahan Planteau Volkan, Perbukitan Tektonik, Lereng Volkan dan Kawah. Berdasarkan peta bentuk lahan lereng marapi Kabupaten Agam bentuk lahan yang paling luas berupa Lereng Volkan Bawah dan Plateau Volkan. Untuk lebih jelas dapat dilihat pada peta bentuk lahan berikut:

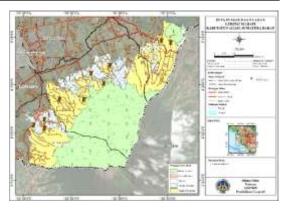
Tabel 3. Luas Bentuk Lahan Lereng Marapi Kab.Agam

Bentuk Lahan	Luas
Plateau Valkau	2376,904463
Perbukitan Tektonik	323,6596592
Lereng Volkan Bowah	2741,447398
Lereng Volkan Atas	832,1994909
Lereng Volkan Tengah	750,5206733
Kaka Volkun	137,9489619
Kaush (Cene)	144,0253544

(sumber: Data Olahan Peneliti 2025)

Gambar 3.Peta Bentuk Lahan Lereng Marapi Kab.

Agam


d. Penggunaan Lahan

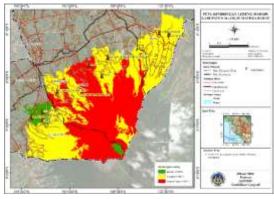
penggunaan lahan berhubungan dengan kegiatan manusia pad asuatu bidang lahan. secara umum dapat dikatakan bahwa penggunaan lahan merupakan kegiatan atau aktivitas manusia berlangsung pada suatu bidang lahan Lillesand & Kiefer (2011).Berdasarakan peta penggunaan lahan lereng Marapi Kabupaten Agam penggunaan lahan paling luas berupa hutan rimba dan tegalan atau ladang. Untuk lebih jelas dapat dilihat pada peta penggunaan lahan berikut:

Tabel 4. Luas Penggunaan Lahan Lereng Marapi Kab.Agam

Penggunaan Lahan	Luas
Hutan Rimba	3455,721573
Permukiman	77,733772
Sawah	1077,640498
Semak Belukar	50,624365
Tegalan/Ladang	2644,985826

(sumber: Data Olahan Peneliti 2025)

Gambar 4.Peta Penggunaan Lahan Lereng Marapi Kab. Agam


e. Kemiringan Lereng

kabupaten Agam merupakan daerah yang memiliki kemiringan lereng yang beragam terutama lereng Marapi Kabupaten Agam. Untuk lebih jelas dapat dilihat pada peta kemiringan lereng berikut:

Tabel 5. Luas Kemiringan Lereng, Lereng Marapi Kab.Agam

Kemiringan Lereng	Klasifikasi	Luar
0.8 %	Detar	3111184,958
25-45%	Curum	38655356,19
>45 %	Sangat Curam	31300518,43

Sumber: Data Olahan Peneliti 2025)

Gambar 5.Peta Kemiringan lereng, Lereng Marapi Kab. Agam

B. Hasil dan Pembahasan Hasil

1) Karakteristik Fisik Lahan

a. Jenis Batuan

batuan induk berasal dari pengedapan magma (batuan beku) yang selanjutnya menjadi sumber utama bahan pembentukan batuan dan tanah melalui proses pelapukan, erosi serta sedimentasi. Berikut jenis batuan induk daerah penelitian.

Tabel 6. Jenis Batuan

Nagari	Titik K	oordinat	Symbol Satuan Lahan	Batuan	Harka
100000000000000000000000000000000000000	Lintang	Bujur		Induk	atau skor
Koto Tinggi	-0.3099885	100.4789311	T 12, IV, Quma Kam Tg	peka	1
Koto Tinggi	Tinggi -0.297835 ² 100.483348 ³ V.1.1.5,[V,Qama.Kam.Tr		V.1 I.5,IV,Qama Kam Tg	peka	1
Bukik Batabuah			peka	1.	
Bukik Batabuah	-0.326967*	336967* 100.4131R5* V.1.1.3, V. Quma And Tg		peka	1
Canduang Koto Luweh	-0.308083 ⁹ 100.453663 ⁹ V.1.1.4,IV,Quena.And.Sv		V.1-1.4,IV,Qsms.And.Sw	peka	1
Lass	-0.3218956	100.4423087	V.1.1.4,V, Quana. And. Su	peka	1-
Last	-0.324802°	248024 100.440934 V.1.1.5,IV.Qama Glei.Sw pe		peks	1
Sungai Pua	ingai Pua = -0.351519 ² 100.420023 ³ V.1.1.3,II.Qsm		V.1.1.3,II.Qama.And.Sw	Agak peka	1
Susgai Pua: -0.37423 ¹ 100.402403 ¹		V.1.1.5,II.Quma.Glei.Sw	Apak peka	3	
Sungai Pua	-0.313014°	100.4083631	V.1.1.3, IV,Qama And Tg	peka	1

Sumber: Data Olahan Peneliti 2025)

b. Kemiringan Lereng

kemiringan lereng terbentuk karena adanya variasi ketinggian pada wilayah lereng Marapi, Kabupaten Agam. Berikut kemiringan lereng daerah penelitian.

Tabel 7. Kemiringan Lereng

Nagari	Tirik K	oordinat	Symbol Satuan Lahan	Kemiringan Lereng	Harkat atan	
	Lintang	Bujur	Lemmany v v v v v v v v v v v v v v v v v v v		Sker	
Koto Tinggi	-0.3099881	100.4789311	T.12, IV, Quna Kam Tg	25-45%	4	
Koto Tinggi	-0.297E35 ⁵	100.4813485	V.1.1.5, IV, Qama Kam Tg	25-45%	4	
Bukik Batahoah	-0.32714	100.4130924	V.1.1.5,V.Quen, Glei Tg	243%		
Bukik Batabuah	-0.3269671	100.4131857	V.1.1.3, V. Quena And Tg	245%	- 5	
Canduang Koto Laweh	-0.3080831	100.4536632	V.1.1.4,JV,Quma.And,Sw	25-45%	4	
Lass	-0.321895*	100.4423061	VIIIA,V. Qana And Sur	>45%	.5	
Lan	-0.9248029	100.4409347	V.1.1.5, IV.Quma Glei. Sw	25-45%	*	
Songai Pua	-0.3515197	100.420023F	V.1.1.3,II,Qama.And.Sw	8-15%	-2	
Stogac Pua	-0.374239	100.402405F	V.I.I.5,II,Qama.Gles.8w	8-15%	2	
Songai Pua	-0.3150142	100.4083634	V.1.1.3,IV.Quma.And.Tg	25-45%	-34	

Sumber: Data Olahan Peneliti 2025)

c. Tindakan Konservasi Lahan

konservasi lahan merupakan upaya menjaga tanah agar tidak rusak seperti erosi dan penurunan kesuburan. Berikut tindakan konservasi lahan daerah penelitian.

Tabel 8 . Tindakan Konservasi Lahan

Nagari	Tink K	oordinat	Symbol Saturn Lakan	Tindakan	Hacks	
0.00	Lintang	Bajur		Konnervasi Tanah	Atau	
Koto Tinggi	199		T.12, IV. Qama Kam.Tg	Term tradinional	- 5	
Koto Tinggi	-0.297835*	100.4833481	V.1.1.5,IV;Qama Kam Tg	Teras traditional	5	
Bukik Barabuah	-0.327140	100.4130929	V.1.1.5,V,Qama-Gles.Tg	Teras tradicional	5	
Bukik Batabuah	-9.326967 ⁶	100.4131859.	859 V.1.1.3, V. Quma And Tg Term readmins		5	
Canduang Keto Laweh	-0.308083#	100.453663#	V.I. I. 4, IV, Qurna, And 5w	Teras traditional	2	
Lasi	-0.321895 ¹ 100.442306 ²		V.1.1 4, V, Qana And Sur	Teras traditional	3	
Laur	-0.3248624	100.4409341	V 1.1.5.JV,Qema,Olei Sw	Teras traditional	- 5	
Suegas Pua	6 -0.351515" 100.420023"		V113,II,Qena.And Sw	Pengelolian turah dan penamaan kontur <20%	1	
Sangai Pua			VI.15,E.Queni Glei Sw	Pengelolsan tasah dan penansan kuntur <20%	E	
Sungai Pra	-0.3130140	100.4005633	V.1.1-3,IV,Quma.And.Tg	Teras madmional	3	

Sumber: Data Olahan Peneliti 2025)

d. Tekstur Tanah

tekstur tanah merupakan klasifikasi berdasarkan tingkat tanah kekasaran atau kelembutan butiran tanah. Tekstur tanah memiliki penting karena peranan mempengaruhi sifat fisik tanah, seperti kemampuan menahan air, penyerapan unsur hara. serta kesuburan tanah. Tanah yang memiliki perimbangan anatara pasir, debu dna liat umumnya lebih baik untuk kegiatan pertanian. Berikut tekstur tanah daerah penelitian.

Tabel 9. Tekstur Tanah

Nagari	Titik K	oordinat	Symbol Satuan Lahan	Tekstur Tanah	Harkat atau
	Lintang	Bujur			Skor
Koto Tinggi	-0.309988"	100.478931"		Lempung berdebu	3
Koto Tinggi	-0.297835°	100.483348"	V.1.1.5,IV,Qama Kam.Tg	berdebu	3
Bukik Batabuah	-0.32714°	100.413092"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Liat Berdebu	5
Bukik Batabuah	-0.326967"	100.413185"		berdebu	3
Canduang Koto Laweh	-0.308083°	100.453663"	V.1.1.4,IV,Qama And.Sw	Lempung berdebu	3
Lasi	-0.321895°	100.442306"	V.1.1.4,V, Qama.And.Sw	Lempung berdebu	3
Lasi	-0.324802°	100.440934"	V.1.1.5,IV,Qama.Glei.Sw	Liat berdebu	5
Sungai Pua	-0.351519°	100.420023°	V.1.1.3,II,Qama. And Sw	Lempung berdebu	3
Sungai Pua	-0.37423°	100.402405"	V.1.1.5,II,Qama.Glei.Sw	Liat berdebu	5
Sungai Pua	-0.313014"	100.408363"	V.1.1.3,IV,Qama.And.Tg	Lempung berdebu	3

Sumber: Data Olahan Peneliti 2025)

e. Jenis Penggunaan Lahan

jenis penggunaan lahan merupakan cara manusia untuk menfaatkan tanah sesuai dengan kebutuhan dan potensi lahan. penggunaan lahan dapat bersifat permanen maupun sementara. Terdapat tiga jenis penggunaan lahan yaitu pola tanaman tumpang gilir, perladangan dan semak beluka.

Tabel 10 . Jenis Penggunaan Lahan

Nagari	Titih K	cordinat	Symbol Satuan Lahan	Jenis Penggunaan	Harks	
	Lintung	Bajur	American reserve and	Lahan	Shor	
Koto Tinggi	-0.309988"	100.478931*	T12, IV, Quna Kam Tg	Pola tanaman tumpang gilir	1	
Koto Tinggi	-0.297835°	100.483348	V.1.1.5,IV/Qana Kam Tg	Pola tananan tumpang gilir	1	
Bulck Batabush	-0.22714"	100.413092	V.1.1.5,V.Quesa Glei.Tg	Pola tanaman tampang gilir	1	
Bukik Batalsuah	-0,326967"	100,413185	V.1.1.3, V, Quesa And Tg	Pola tanaman tungang gilir	1	
Canduang Koto Lawah	-0.3080831	100.433663	V1.1.4,IV/Quasa And Sw	Pola tasaman tasupang gilar	1	
Lan	-0.321895"		V.I.1.4,V. Queza And Sw	Pola tanaman tumpang gilar	1	
Luci	-0.324802*	1900	V.1.1.5,IV/Queus Glei.Sur	Pols tuswan tumpang gilir	1	
Sungai Pau	-0.351519"	100.420023"	V.1.1.3,II,Queen And Sw	Pola tanaman tampana ailir	- 1	
Sungas Pua	-0.37423"	100.402405"	V.1.1.5,II,Qassa.Glsi.Sw	Pola tunaman tunapang gilir	1	
Susgai Pua	-0.313014"	100.408365	V.1.1.3,IV/Quma.And.Tg	Pola tanaman tampan silir	1	

Sumber: Data Olahan Peneliti 2025)

f. hasil Analisis Pengharkatan Kondisi Fisik Lahan (Karakteristik Fisik Tanah)

Tabel 11 . Hasil Analisis Pengharkatan Kondisi Fisik Lahan (Karakteristik Fisik Lahan)

Negati	Stated Service Labor	Batting Is	1.	1		Reservoir inte		Totator Tee		Feet Progres		Tend	Timples Deposited
	- Allenia	Free	18	Den	Ŧ	See	H	Dete	W	Sec	H		11111
Rew Treat	Y.H.D. Quon Size. 14	140	1	5-4h		Two tolored	1	Leading Rections	ľ	Printegenan Temperatural	1	14	Telas
Ern Treat	411050miles to	200	1	25.674	*	Tares traditional	, P	Sampling .	1	Triangueros (E)	.1	140	Setting
bas Isstud	711119mm06.3s	pile	Y	HIP	1	Two telecond	1	Lat Beatites	٨	Type Capacities Transplant (p.fut)	.*.	15	Telep
Los Demos	TITLE Good Antig	944	1	47%	ľ	Ten national	1	T.Acopologi Sarrielra	ľ	Submission respectation	1	11	Tylina
Cashing Services	FL147(Quan Askity	(846)	4	24%	1	The toloud	2	Leaguing Section	ľ	Proprietations Subspace plan	1		Selling
Let	73.3 4.3, Quan, had 5%	Aspid	1	410	1	Terre Vedicioni		3 sespang excelle	Г	Туп призона тензина (вбу	1	11)wisos
Lat	3)1)X0m-0+5-	pela	1	35.25%	t	New technique	1	Tar favorito	Г	Submission Suspensible	1	14.	helasy
house five	71.1.1.EQuin.nel3v	April patro	<i>a</i> .	1076	*	Properties took dat properties Annie 1775	,	-	1	Triangle else	.+	14-	Preside.
Ange For	VVVOlumenter	Again prints	X.	Fig.	1	Forgetimen totals designationes boots nittle	F	Listenatio	ľ	Polyaporos resigned play	1	,III	heling
Stepper Free	Y 111 P. Quantut Ty	pela	1	Print		See relimed	1	Limping	Ľ	Policipamore company place	1	14	Telleg

Sumber: Data Olahan Peneliti 2025)

Pembahasan

Bahan induk merupakan keasaan tanah pada awal mulanya dari proses pembuatan tanah. Sebagaimana yang terdapat pada lereng Marapi Kabupaten Agam bahan induknya terbagi atas dua yaitu peka dna agak peka. Menurut kementrian pertanian (1980) tanah yang termasuk peka andosol. yaitu berupa laterit. grumosol, dan pedsolik. Singkatnya tanah yang termausk peka memiliki sifat mudah tererosi karena tekstur dan struktur tanah yang tidak stabil dan biasanya berada pada lereng curam sehingga perlu pengelolaan khusus.

Tekstur tanah merujuk pada porositas relatif partikel pasir, debu dan lempung didalam tanah, yang berpengaruh langsung terhadap hidraulik tanah. Kawasan lereng

Marapi Kabupaten Agam memiliki berdebu tekstur tanah liat dan lempung berdebu, yang mana tanah dengan tekstur ini termasuk rawan mengalami degradasi karena beberapa karakteristik fisik tanah.jenis tanah ini memiliki kandungan partikel halus (debu dan liat) yang tinggi sehingga mampu menyimpan air dna unsur hara dengan baik, tetapi juga memiliki drainase yang lebih lambat. Kondisi ini berpotensi menyebabkan genangan air yang lama, memicu pengikisan dan kehilangan struktur tanah.

Kemiringan lereng daerah lereng Marapi Kabupaten Agam didominasi oleh kemiringan lereng curam sampai sangat curam. Hal ini menjadi terjadainya degradasi pendorona lahan hortikultikultura kawasan lereng Marapi Kabupaten Agam. Sebagaimana menurut Kartasapoetra (1994) kemiringan lereng dapat lebih mudah terganggu atau rusak, apabila derajat atau persen kemiringan lebih besar dengan curah hujan uang tinggi dapat mempengaruhi besarnya erosi dan aliran permukaan. Hal ini sejalan dengan pendapat (Asdak, 2002) yang menyatakan lereng memiliki beberapa unsur diantaranya kemiringan, arah, panjang dan posisi lereng. Kemiringan lereng menentukan besar kesilnya erosi.

Tindakan konservasi lahan merupakan upaya yang dilakukan untuk mendukung atau mengelola tanah atau lahan agar tidak cepat mengalami kerusakan pada lahan pertanian akibat degradasi, dengan tujuan untuk dapat tetap menjaga kesuburan serta produktivitas tanah dengan perawatan sesuai dengan kondisi tanah. Marapi Lereng Kabupaten Agam termasuk kedalam dua kategori tindkaan konservasi lahan yaitu teras tradisional dan pengelolaan tanah dan penamaan <20%. kontur Teras tradisonal merupakan teknik konservasi tanah yang digunakan didaerah yang kemiringan memiliki lereng yang curam dan daerah pertanian yang lama dikelola secara turun temurun. Sedangkan pengelolaan tanah dan penamaan kontur <20% merupakan pengelolaan tanah yang dilakukan sederhana untuk dengan dapat erosi. tindakan menekan laju konservasi lahan ini terdapat pada kemiringan <2-% lereng atau termasuk kategori landai dan datar.

Jenis penggunaan lahan / vegetasi sangat berperan terhadap degradasi lahan, karena terkait dengan persentase tutupan lahan, pengaruh ienis penggunaan lahan/vegetasi terhadap proses degradasi lahan yaitu mengurangi energi tumbukan hujan, sehingga tidak mengenai tanah secara langsung (Sitorus et al.,2011). Pada lereng Marpi jenis penggunaan lahan adalah pola tanaman tumpang gilir. Menurut (Pusat BPSDMP, 2019) sistem gilir tumpang merupakan metode bercocok tanam dimana tanaman ditanam secara berurutan dilahan sehingga yang sama memungkinkan petani untuk panen lebih dari satu kali dalam setahun meningkatkan untuk hasil dan efisiensi produksi.

Berdasarkan hasil analisis diatas, setiap kondisi lahan (karakteristik lahan) memberikan pengaruh atau menunjukkan sifat-sifat uang mnejadi pemicu terjadinya degradasi daerah lereng Marapi Kabupaten Agam. Dengan demikian kondisi fisik lahan (karakteristik lahan) merupakan faktor lahan secara keseluruhan merupakan penyumbang harkat terbesar untuk terjadinya degradsi lahan daeah penelitian.

D. Kesimpulan

Berdasarkan penelitian yang telah dilakukan pada wilayah Hortikultura Lereng Marapi Kabupaten Agam, maka dapat disimpulkan bahwa kondisi fisik lahan (karakteristik tanah) memiliki kontribusi terjadinya degradasi fisik lahan dari variabel yang diteliti yaitu bahan induk, kemiringan lereng, konservai lahan, tekstur tanah, dan jenis penggunaan lahan secara keseluruhan merupakan faktor pendorong terjadinya degradasi fisik lahan.

DAFTAR PUSTAKA

Devtami, Α. Anggi (2025). *JURNALISME* **BENCANA** PADA **GALODO** PEMBERITAAN TANAH DATAR **SUMATERA** BARAT DI MEDIA ONLINE HARIANSINGGALANG. CO. ID (Doctoral dissertation. Universitas Islam Negeri Sultan Syarif Kasim Riau).

Dinas Sumber Daya Air dan Bina Konstruksi Provinsi Sumatera Barat. (2024,5 April). Pelaksanaan Tanggap Darurat Bencana di Aia Angek Kab. Tanah Datar akibat bandang lahar dingin Gunung 20 Marapi. Diakses tanggal Desember 2024, dari https://sdabk.sumbarprov.go.i d/details/index berita/10

Fauzi, D., & Devi, A. T. (2024). Potensi Sektor Pertanian dalam Meningkatkan Daya Saing Perekonomian Kabupaten

- Agam. MAHATANI: Jurnal Agribisnis (Agribusiness and Agricultural Economics Journal), 7(1), 40-58.
- Hermon, D., & Barlian, E. (2012). *Mitigasi bencana hidrometeorolgi: banjir, longsor, ekologi, degradasi lahan, puting beliung, kekeringan.* UNP Press.
- Hermon,D. dan Khairani.2009. Geografi Tanah, Yayasan Jihadul Khair Center. Padang.
- Pusat BPSDMP Pertanian. (2019). *Sistem* tanam tumpang gilir. Diakses dari https://pustaka.bppsdmp.pertanian.go.id/index-berita/sistem-tanam-tumpang-gilir
- Sitorus, S.R.P. (2004). Evaluasi Sumberdaya Lahan. Bandung: Tarsito Bandung.
- Sitorus, S. R., Susanto, B., & Haridjaja, O. (2011). Kriteria dan klasifikasi tingkat degradasi lahan di lahan kering (Studi kasus: Lahan kering di Kabupaten Bogor).
- Lillesand, T. M., & Kiefer, R. W. (2011).

 Remote sensing and image interpretation (6th ed.). John Wiley & Sons.
- MEa, M. E. A. (2005). Ecosystems and Human Well-Being: wetlands and water synthesis.
- Tentua, V. V., Salampessy, H., & Haumahu, J. P. (2017). Kesesuaian Lahan Komoditas Hortikultura di Desa Hative Besar Kecamatan Teluk Ambon. *Jurnal Budidaya Pertanian*, *13*(1), 9-16.