INTRODUCTION

High productivity is the expectation of every company. Every organization continuously strives to increase its productivity organizations that want to grow always strive to increase their productivity. Productivity is a system. A system can be productive if the production exceeds the processed input, although there are many ways to assess high and low productivity (Baidi et al., 2020).

Work productivity results from the behaviour of team members in work situations and determines the viability and profitability of the organization (Hartini et al., 2019; Islam et al., 2019; Wolor et al., 2021). Productivity is essential for companies to determine company targets and sustainability. Innovation is a crucial point of the business model for the creative industry to gain a competitive advantage (Shaki & Khoshsaligheh, 2017; Wolor et al., 2021; Titisari et al., 2022).

Human resource management must be considered to produce qualified employees who can compete to increase excellent and relevant productivity (Sutianingsih et al., 2021). Productivity measures how health resources are used to achieve a series of production results to achieve the highest level of performance with the least resource expenditure, including human resources. Increasing the productivity of the small food industry can be done in many ways, including improving capabilities and experience as well as product innovation. Ability and work experience are individual characteristics in path-goal theory that affect performance (Farhan 2018; Baidi et al. 2020; Saleem et al. 2020; Saleem et al. 2021).

Good human resource management can improve the capabilities of an organization (Pak et al. 2021; Truxillo et al. 2012). In addition, professional human resources are inextricably linked with the internal mobility of team members (Carter et al., 2018). So that managing human resources is very important to pay attention to. These are to produce qualified employees who can compete to increase productivity. Human resource practices drive employee work results that contribute to the organization's overall performance. Therefore, organizations can adjust their human resources practices to drive employee work results that contribute to their overall performance (Vu et al., 2020).
Productivity measures how health resources are used to achieve a series of production results to achieve the highest level of performance with the least resource expenditure (Slade 2021). Performance depends on the execution of tasks sacrificed to employees. These include what employees should do or how they carry out their duties. So, performance is a set of individual behaviours about a given job. Employees can achieve the organization's expectations (Darvishmotevali and Ali 2020a). So, performance is the evaluation of results. In performance, behaviour becomes one of the closely related factors (Darvishmotevali & Ali, 2020a; Pang & Lu, 2018; Vo et al., 2019; Lazauskaite et al., 2021).

Productivity is a productive effort measured by calculating inputs and outputs. Good service and healthy employees are factors that support productivity. (Darvishmotevali and Ali 2020b)(Varianou-Mikellidou et al. 2019). Consider conductivity, and there is a close relationship between unproductive employee costs and productivity (Elsen and Vermeeren 2020). Productivity can also strengthen the ties between workability and company performance (Bonsdorff et al., 2018). In addition, workload also affects work performance and productivity (Husin et al. 2019). Companies that do not manage less productive employees will adversely affect the productivity and competitiveness of the company (Varianou-Mikellidou et al., 2019).

Increased productivity is a valuable resource use measure (Yulianti et al., 2020). In addition, performance can be affected by emotional support, coworkers, and work crafts (Shin, Hur, and Choi, 2020). Potential areas that have the opportunity to develop the economy further are the home food industry. The home food industry is essential for supporting the national economy. The food industry is primarily women. Based on the studies that have been done, women's employability is more potent than that of men (Smyth et al., 2018).

Increasing the productivity of the small food industry can be done in many ways, including improving capabilities and product experience, and innovation. Abilities and experiences are individual characteristics of path-goal theory. In the theory of goals, abilities, experience, and locus of control can affect performance (Robbins and Timothy A. Judge 2016). Path-goal theory is a theory of general theoretical evolution of contingency approaches to leadership topics derived from motivational theory (Alanazi et al., 2013). Path-goal theory is an instrument for eliminating (Saleem et al. 2021).

The theory of path objectives, through contingency factors, has a relationship with the leadership behaviour of the principal, the characteristics of the tasks and features of the employee, the aspects of the job and motivation, and the characteristics of an individual (Farhan 2018). The factors of the teacher include work ability and work experience. Good workability is closely related to high quality and productivity (Ehmann et al., 2021). Skills, experience, improvement, and abilities positively affect productivity (Chahar et al., 2021).

The concept of workability blends well with the sustainability movement (Smyth et al., 2018). In addition, the current job demands show employability and how good a person's health, skills, and experience are (Smyth et al., 2018). Workability is the ability of employees to perform tasks according to physical and psychological health conditions and adjust to the demands of the job (Malisiska & Bugajska, 2021). Regarding individual characteristics, gender is a critical and personal factor associated with diseases (health conditions). Employees working when their body condition is unhealthy will reduce their productivity (Correia Leal and Ferreira 2021).

In addition to workability, another factor affecting productivity is experience. Thus, a factor that can drive work performance is work experience (de Sivatte et al. 2021). Human resource theory suggests that performance improvement can be made by improving the knowledge and skills of the workforce (de Sivatte et al. 2021)

Wang & Hoi (2019) researched the effect of work experience that, with increased work experience, leads to a decrease in the effectiveness of environmental motivators. Similarly, de Sivatte et al. (2021) state that experience in the office can improve performance and design appropriate employee planning strategies.

In addition to workability and experience, innovation also plays an essential role in increasing productivity. Innovation is crucial to business success (Custódio, Ferreira, and Matos 2017). Innovation is a driver in an economy that requires investment in various forms, such as products, good services, and technology (Custódio et al. 2017). Individual characteristics of employees can provide clues on how to innovate and perform (Grosser et al., 2018).

Social innovation in society is indispensable to increasing competitiveness and productivity. This increase in productivity impacts people's quality of life (Morawska-Jancelewicz 2021). Social norms or beliefs may influence innovation activities (Wang and Hooi 2019). In small industries, the capability of collaboration innovation can improve marketing performance (Maryono et al. 2021). Innovations can also enhance the quality of life and solid social welfare (Morawska-Jancelewicz 2021). Innovation is an important thing that companies must do to increase product sales both at home and abroad (Brancati et al., 2018). Today's problem is that many small industries have not achieved the expected productivity. Human resources are not yet known to affect productivity. Workability and experience are individual characteristics in path-goal theory that are variables connecting the influence of leadership on performance. However, innovation is not yet known to contribute to the effect of ability and experience on productivity.
The novelty of this research is the development of path-goal theory, where individual characteristics consisting of ability and work experience are initially connecting variables. This study is used as the dependent variable. In addition, it was found that innovation can be a mediating variable of the influence of work experience on productivity (Widjajanti et al., 2020).

METHOD

This research is quantitatively explanatory. Hypothesis testing explains relationships (causality) between variables (Deyganto 2022; Pahi et al. 2020). This research examines productivity variables: workability, work experience, and innovation. Indicators of productivity are 1) work quantity, 2) work quality, and 3) work accuracy. Indicators of workability consist of 1) health, 2) skills, and 3) proficiency corresponding to the job demands. Experience indicators consist of tenure, level of knowledge, skills possessed by individuals, and mastery of work and equipment—an innovation with indicators: product, market, and process innovation.

The respondents of this study are small snack entrepreneurs who sell at the Kartasura traditional market, Sukoharjo, with the criteria of having done their business for five years. With these criteria, as many as 75 entrepreneurs were obtained, and all were sampled. All of them were tested so that the sample was saturated, and the sampling technique was through a census. Survey methods carry out this research; primary data collection is obtained directly from the respondents through research instruments. Tools use questionnaires, observations, and documentation.

The study used descriptive statistical analysis and multiple regression analysis to test for hypothesis using SPSS ver.24. To analyze the role of innovation mediation on the influence between workability and work experience, using regression analysis (Baron. and Kenny 1986; Wu and Zumbo 2008; Zhao, Lynch, and Chen 2010) is also to identify whether innovation can increase the influence of workability and work experience on productivity in the context of this research or not. In addition, based on the standard theoretical approach, the study used the Sobel test (Sobel 1982) for indirect effects.

RESULTS

The characteristics of respondents are grouped into several categories based on age, type of production, business experience, and average net income each month.

<table>
<thead>
<tr>
<th>No</th>
<th>Age (Years)</th>
<th>Sum</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>>30</td>
<td>10</td>
<td>13,33</td>
</tr>
<tr>
<td>2.</td>
<td>30 - 39</td>
<td>15</td>
<td>20,00</td>
</tr>
<tr>
<td>3.</td>
<td>40 - 49</td>
<td>30</td>
<td>40,00</td>
</tr>
<tr>
<td>4.</td>
<td>≥50</td>
<td>20</td>
<td>26,67</td>
</tr>
</tbody>
</table>

The respondents varied from less than 30 years to more than 50 years. The highest number is aged between 40 to 49 years, with a percentage of 40%. In second place are respondents over 50 years, as much as 26.67%. The age of these respondents is in the productive age category, so productivity can consistently be increased as long as these entrepreneurs have adequate abilities and sufficient experience.

Furthermore, the types of products produced by the respondents were dry and wet snacks. Twenty-seven people, or 36 percent, made dry snacks. A total of 33.33 percent made wet snacks. But some entrepreneurs also produce both (damp and dry). This type of food is an average snack typical of Surakarta.

<table>
<thead>
<tr>
<th>No</th>
<th>Types of Production</th>
<th>Sum</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dry Snacks</td>
<td>27</td>
<td>36,00</td>
</tr>
<tr>
<td>2.</td>
<td>Wet Snacks</td>
<td>25</td>
<td>33,33</td>
</tr>
<tr>
<td>3.</td>
<td>Drya and Wet Snacks</td>
<td>24</td>
<td>32,00</td>
</tr>
</tbody>
</table>

Respondents' experiences ranged from less than five years to more than 30 years. The following table illustrates respondents' experiences in managing their businesses. Different types of food and unique characteristics of this region's typical food are the main attraction for consumers.
Respondents who had 20-29 years of business experience were the most, namely 27 people or 36%. Then entrepreneurs with 10 to 19 years of experience, as much as 26.67%. The rest are entrepreneurs with 5 to 9 years and more than 30 years of experience. This data shows that entrepreneurs have been in business for a long time. With this enough work experience, the possibility of productivity will be higher.

Respondents' net income varied, ranging from less than 2 million rupiahs to more than 6 million. Based on the survey results, revenue between 4 and 6 million ranks first. Then the income of more than 6 million ranks second. This varied income is due to many factors, including the amount of production, sales turnover, and the ability of entrepreneurs to save their resources.

Previous research instruments have been tested with validity and reliability tests, with all question items declared valid and reliable. All statement items on the questionnaire are tested for validity. Before the study, researchers tested instruments prepared on 30 respondents, namely the owner of the home entrepreneur industry in Sukoharjo Regency, Central Java Province. This validity test uses the Pearson correlation method using a tool like the SPSS.24.

The decision criterion on the validity test the rate (α) is 0.05 with $n = 75$, obtaining a table r value of 0.361. If the value of the corrected item-total correlation $> r$ table, then the indicator is feasible (valid) and vice versa (Sugiyono 2015). The results of the instrument validity test are presented in the form of the following table:

Table 5. Summary of Instrument Validity Test

<table>
<thead>
<tr>
<th>Item</th>
<th>Workability</th>
<th>Work Experience</th>
<th>Innovation</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.786</td>
<td>0.81</td>
<td>0.743</td>
<td>0.622</td>
</tr>
<tr>
<td>2</td>
<td>0.779</td>
<td>0.747</td>
<td>0.838</td>
<td>0.824</td>
</tr>
<tr>
<td>3</td>
<td>0.503</td>
<td>0.806</td>
<td>0.733</td>
<td>0.752</td>
</tr>
<tr>
<td>4</td>
<td>0.825</td>
<td>0.089</td>
<td>0.773</td>
<td>0.707</td>
</tr>
<tr>
<td>5</td>
<td>0.863</td>
<td>0.831</td>
<td>0.717</td>
<td>0.72</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>0.576</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

The validity test results for all items of the statement or indicator (observed) are valid, marked by Pearson correlation values $> \text{cut off or} < \alpha$ significance, with a cut-off of 0.361 and a significance level of 0.000. After the validity, the test is carried out, and all statement items are declared valid. The next step is to conduct a reliability test. A variable is reliable if it gives a Cronbach alpha value of > 0.6. Reliability tests are carried out on all instruments (Sugiyono 2015).

Table 6. Summary of Instrument Reliability Test Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cronbach's Alpha</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workability</td>
<td>0.803</td>
<td>Reliable</td>
</tr>
<tr>
<td>Work Experience</td>
<td>0.861</td>
<td>Reliable</td>
</tr>
<tr>
<td>Innovation</td>
<td>0.817</td>
<td>Reliable</td>
</tr>
<tr>
<td>Productive</td>
<td>0.79</td>
<td>Reliable</td>
</tr>
</tbody>
</table>
The reliability test result of the Cronbach alpha value for the workability variable was 0.803; work experience of 0.861; innovation by 0.817, and productivity by 0.817. The reliability test results showed that all variables have a value of more than 0.60, so variables (construct) are said to be reliable or have high reliability or high accuracy to be used as variables (construct).

The results of the questionnaire scores are summarized and described as follows:

Table 7. Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workability</td>
<td>12,00</td>
<td>25,00</td>
<td>19,01</td>
<td>3,03</td>
</tr>
<tr>
<td>Work Experience</td>
<td>14,00</td>
<td>25,00</td>
<td>19,85</td>
<td>3,10</td>
</tr>
<tr>
<td>Innovation</td>
<td>12,00</td>
<td>25,00</td>
<td>19,87</td>
<td>3,18</td>
</tr>
<tr>
<td>Productivity</td>
<td>15,00</td>
<td>30,00</td>
<td>23,05</td>
<td>3,34</td>
</tr>
</tbody>
</table>

The lowest questionnaire score is one, and the highest is 5. The number of workability variable question there are five items. The minimum score is 12, the maximum score is 25, and the average is 19.01. The score is included in the excellent category. This means that the workability of entrepreneurs in running their businesses is included in the superb category.

The number of variable questions of work experience there are five items. The minimum score is 14, the maximum score is 25, and the average is 19.85. The score is included in the excellent category. This means that the work experience of entrepreneurs in running their businesses is included in the excellent category. In other words, these entrepreneurs already have sufficient expertise to run their businesses.

The variable productivity of the number of questions in six items. The minimum score is 15, and the maximum score is 30, so the average score is 23.05. The average score is included in the excellent category. This means that the productivity of entrepreneurs in running their businesses is included in the excellent category.

This study used innovation-mediating variables. The number of innovation variable questions is five items. The minimum score is 12, the maximum score is 25, and the average is 19.87. The average score is included in the excellent category. This means that entrepreneurs are good at innovating. This innovation is intended to increase its productivity with the hope that the productivity will be better in addition to the ability and experience, plus creativity or innovation.

A positive regression coefficient of all variables is free, indicating a positive influence on productivity between workability, work experience, and innovation. For example, the coefficient of determination equation 1 is 0.611, while in equation 2, it is 0.801. Therefore, the total R2 value of 0.928 can be interpreted as variations in productivity explained by variables of ability, experience, and innovation of 92.8%. Other variables outside the research model explain the remaining 7.2%.

The normality test results with standard probability plots show that the dots tend to spread close to the diagonal line, assuming normality. Workability value of 0.322 and a VIF value of 3,106. Experience has a value of 0,254 and a VIF value of 3,930. Variable innovation value of 0,379 and a VIF value of 2,640. All those variables' tolerance values are> 0.10 and VIF values < 10, so it can be concluded that all variable innovation data do not experience multicollinearity. There is no such clear pattern in heteroskedasticity testing by looking at scatterplots. If the points spread above and below the number 0 on the Y axis, heteroskedasticity does not occur. The autocorrelation test is seen from Durbin Watson's statistical value of 1,927. Since Durbin-Watson's statistical value is between 1 and 3, i.e., 1 <1,927< 3, the assumption of non-autocorrelation is met. So it can be concluded that there is no autocorrelation between all research data.

Model accuracy test results show that the calculated F value is 32.801, and the Sig. The value is 0.000 < 0.05. So it can be concluded that the selection of models is correct, or in other words, the ability, experience, and innovation significantly affect productivity.

Table 8. First equation t-Test Result (Dependent Variable: Productivity)

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.467</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Workability</td>
<td>0.414</td>
<td>4.528</td>
<td>0,000</td>
</tr>
<tr>
<td>Work Experience</td>
<td>0.227</td>
<td>2.210</td>
<td>0,030</td>
</tr>
<tr>
<td>Innovation</td>
<td>0.339</td>
<td>4.020</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Workability has a significant value smaller than 0.05, so it is concluded that workability positively and significantly influences productivity. Furthermore, work experience ultimately and substantially impacts productivity, and innovation positively influences productivity.

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>3.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workability</td>
<td>0.218</td>
<td>1.745</td>
<td>0.085</td>
</tr>
<tr>
<td>Work Experience</td>
<td>0.339</td>
<td>4.791</td>
<td>0.030</td>
</tr>
</tbody>
</table>

The analysis results, workability to innovation is more than 0.05. So it was concluded that workability is positive but not significant to innovation. On the other hand, work experience has a considerable value smaller than 0.05, so it is supposed that workability has a positive and significant influence on innovation.

Data processing results are known as the effect of workability on innovation coefficient of 0.218 with SE 0.131. The impact of innovation on the productivity coefficient of 0.339 with SE 0.088. The role of innovation variables mediating the effect of workability on productivity can be illustrated in the following analysis path figure:
Innovation cannot mediate the influence of workability on productivity. The impact of innovation on business success suggests that innovative start-ups are an important variable with the most effect on small industries. (Reniati, Santi, and Sabri 2019). The small industry collaboration strategy in marketing activities can improve marketing performance (Maryono et al. 2021). Organizations can implement and adapt their high-performance human resource systems in many steps ranging from staffing, training, awarding, and increasing employment opportunities that can improve team members' development.

DISCUSSION

Workability has a significant favorable influence on productivity. Workability is an individual's ability to run something realized through his actions to increase the productivity of his work. So with good work skills or workability, productivity will improve; this supports the opinion. The micro-industry must continue to partner with suppliers and with customers so that its marketing performance continues to run well (Maryono et al. 2021).

Work experience has a significantly beneficial influence on productivity. The level of knowledge, service length, and skills can measure work experience. Indicators of experience: tenure, knowledge and skills, mastery of work and equipment. Thus the better the work experience, the higher the productivity. These results are consistent with the study by Arief et al. (2020), which states that workability significantly affects employee work performance.

Innovation to improve productivity. The tighter the competition in the existing home industry, it takes to innovate. Something new and different will make customers more interested in the products produced by the home industry. Innovation is essential in a company. Innovation can create new business activities and generate economic growth. Innovation also improves market segments, creating a better position for a company (Chang and Uen, 2022; Donaldson, Ensher, and Grant-Vallone, 2000). So the better the innovation, the higher the productivity (Maryono et al., 2021). Previous studies explored the link between leadership competency systems in many steps ranging from staffing, training, awarding, and improving employment opportunities that can create improved team member development and competence (Vu et al. 2020). Innovation can be successful if employees can support these activities by responding, developing, adapting, and implementing quality ideas. (Arijanto, et al., 2022)

Innovation cannot mediate workability to productivity. Innovation is usually closely related to new equipment or technology. However, due to the limited capital owned by these industrial homes, creation is only made on changes in working methods or adding flavour variants, colours, and packaging. This change in working practices takes longer in production because they are accustomed to working with old techniques or methods they have been doing for many years. This new method or way of working that has not been done can slow down their work process. Work experience is mediated with innovation to increase productivity. Thus innovation can strengthen the influence of work experience on productivity.

CONCLUSION

Conclusion of the study: Workability, work experience, and innovation significantly affect productivity. Workability has no significant effect on innovation. Work experience has a substantial impact on innovation. Innovation-mediated workability has no significant effect on productivity. Innovation-mediated work experiences have a considerable impact on productivity.

The novelty of this study: individual characteristics of workability and work experience in the goal path theory are connecting variables influencing job performance and satisfaction. However, personal factors there is research is an independent variable influencing productivity. In addition, this study added variable innovation, which can be proven to strengthen the influence of work experience on productivity.

The limitation of this study is that innovation has not been able to become a variable that can strengthen the influence of workability on productivity. This is due to the weak effect of workability on innovation. Further research is expected to conduct a more in-depth study on the fundamental role of innovation in the impact of workability on productivity.

Practical implications: This research contributes to companies' policy-making to increase productivity through ability and work experience. Product innovation is needed so that industrial home products can compete in local and global markets. However, innovation requires new equipment or technology that requires costs, and the home industry has been unable to do this. This research informs the government that the home industry requires special attention, such as training, mentoring, and capital assistance in equipment or technology, so industrial home productivity increases.
REFERENCES

