Peramalan Konsentrasi PM2.5 Menggunakan Model ARCH/GARCH dan Long Short-Term Memory (Studi Kasus: Kota Jakarta Pusat)

Authors

  • Fardhi Dzakwan Fauzan Politeknik Statistika STIS
  • Dhymas Adhyza Rayhan Politeknik Statistika STIS
  • Hala Mutiara Putri Politeknik Statistika STIS
  • Fitri Kartiasih Politeknik Statistika STIS

DOI:

https://doi.org/10.23969/infomatek.v26i1.12603

Keywords:

ARCH/GARCH, Jakarta Pusat, LSTM, PM2.5

Abstract

Polusi udara merupakan masalah serius di Jakarta akibat revolusi industri dan aktivitas komuter yang tak pernah berhenti. Particulate matter (PM) 2.5 merupakan salah satu dari 6 polutan berupa partikel tersuspensi berukuran diameter aerodinamis lebih kecil dari 2,5 µm. PM2.5 menyebabkan terganggunya sistem kardiovaskular dan respiratory, mengakibatkan kejadian kelahiran prematur, dan kejadian berat badan lahir rendah. Oleh karena itu, dibutuhkan kebijakan dan aturan dari pemerintah terkait pengendalian polusi udara agar masyarakat memperoleh kesehatan yang lebih baik, mengurangi kemacetan, mitigasi perubahan iklim, dan efisiensi energi. Peramalan konsentrasi PM2.5 menjadi salah satu hal penting yang dilakukan untuk pengambilan kebijakan demi tercapainya visi jangka panjang tahun 2030, yaitu kota yang aman, nyaman, produktif, berkelanjutan, sebanding dengan kota besar lainnya dan rumah bagi warga (Menuju Udara Bersih Jakarta). Penelitian ini bertujuan untuk mendapatkan model terbaik untuk peramalan konsentrasi PM2.5 di Wilayah Jakarta Pusat. Metode yang digunakan, yaitu Generalized Autoregressive Conditional Heteroskedasticity (GARCH) dengan Long Short-Term Memory (LSTM) dan menguji akurasi model dengan data sebenarnya. Hasil penelitian memberikan kesimpulan bahwa metode LSTM lebih baik dalam meramalkan konsentrasi PM2.5 berdasarkan MAE, MAPE, MSE, dan RMSE. Hasil peramalan dengan metode LSTM menunjukkan bahwa konsentrasi PM2.5 di Wilayah Jakarta Pusat selama 48 jam kedepan berada di rentang tidak sehat bagi kelompok sensitif dan di beberapa jam berikutnya masuk ke kategori tidak sehat. Maka dari itu, dibutuhkan perhatian lebih dari pemerintah untuk melakukan pengendalian polusi udara demi kualitas udara dan kesehatan masyarakat kota.

Downloads

Download data is not yet available.

References

American Lung Association. (2023, November 2). Who is Most Affected by Outdoor Air Pollution?

Badan Pusat Statistik. (2019). Statistik Komuter Jabodetabek 2019.

Bové, H., Bongaerts, E., Slenders, E., Bijnens, E. M., Saenen, N. D., Gyselaers, W., Van Eyken, P., Plusquin, M., Roeffaers, M. B. J., Ameloot, M., & Nawrot, T. S. (2019). Ambient black carbon particles reach the fetal side of human placenta. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-11654-3

Br Perangin-angin, E. E., Bahtiar, H., Hasna, N. F., & Kartiasih, F. (2024). A VECM Approach to Assessing The Impact of Economic Growth, Livestock Production Index, and Crop Production Index on Methane Gas Emissions in Indonesia. Jurnal Pertanian Agros, 26(1), 4711–4732. http://dx.doi.org/10.37159/j. p agros.v26i1.3841

Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., & Goletti, D. (2020). Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. In Journal of Infection (Vol. 81, Issue 2, pp. 318–356). W.B. Saunders Ltd. https://doi.org/10.1016/j.jinf.2020.04.017

Chaney, R. A., Sloan, C. D., Cooper, V. C., Robinson, D. R., Hendrickson, N. R., McCord, T. A., & Johnston, J. D. (2017). Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS ONE, 12(11), 1–15. https://doi.org/10.1371/journal.pone.0188053

Chen, T., Chen, F., Wang, K., Ma, X., Wei, X., Wang, W., Huang, P., Yang, D., Xia, Z., & Zhao, Z. (2021). Acute respiratory response to individual particle exposure (PM1.0, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases. Environmental Pollution, 271, 116329. https://doi.org/10.1016/j.envpol.2020.116329

Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651–2662. https://doi.org/10.1016/j.atmosenv.2011.02.066

Com, I. (2018). Air Pollution And Child Health. http://apps.who.int/bookorders.

Costa, L. G., Cole, T. B., Dao, K., Chang, Y. C., Coburn, J., & Garrick, J. M. (2020). Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacology and Therapeutics, 210, 107523. https://doi.org/10.1016/j.pharmthera.2020.107523

Elheddad, M., Benjasak, C., Deljavan, R., Alharthi, M., & Almabrok, J. M. (2021). The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries. Technological Forecasting and Social Change, 163(November), 120485. https://doi.org/10.1016/j.techfore.2020.120485

Galbraith, J. W., & Zinde-walsh, V. (2001). Autoregression-Based Estimators for ARFIMA Models. Cirano.

Grzywa-Celińska, A., Krusiński, A., & Milanowski, J. (2020). ‘Smoging kills’ – Effects of air pollution on human respiratory system. Annals of Agricultural and Environmental Medicine, 27(1), 1–5. https://doi.org/10.26444/aaem/110477

Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., Vineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., & Loomis, D. (2014). Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environmental Health Perspectives, 122(9), 906–911. https://doi.org/10.1289/ehp.1408092

Jayadri, B. L., Pangastuti, M., Farhan, M., & Kartiasih, F. (2024). Determinants of PM2.5 Concentration in DKI Jakarta Province : A VAR Model Approach. Inferensi, 7(1), 27–40. https://doi.org/10.12962/j27213862.v7i1.19843

Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment International, 42(1), 10–19. https://doi.org/10.1016/j.envint.2011.03.003

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402–406. https://doi.org/10.4097/kjae.2013.64.5.402

Kartiasih, F., & Setiawan, A. (2020). Aplikasi Error Correction Mechanism dalam Analisis Dampak Pertumbuhan Ekonomi, Konsumsi Energi dan Perdagangan Internasional Terhadap Emisi CO2 di Indonesia. Media Statistika, 13(1), 104–115. https://doi.org/10.14710/medstat.13.1.104-115

Kitamura, H., Dahlan, A. V., Tian, Y., Shimaoka, T., Yamamoto, T., & Takahashi, F. (2018). Impact of secondary generated minerals on toxic element immobilization for air pollution control fly ash of a municipal solid waste incinerator. Environmental Science and Pollution Research, 25(21), 20700–20712. https://doi.org/10.1007/s11356-018-1959-5

Leachi, H. F. L., Marziale, M. H. P., Martins, J. T., Aroni, P., Galdino, M. J. Q., & Ribeiro, R. P. (2020). Polycyclic aromatic hydrocarbons and development of respiratory and cardiovascular diseases in workers. Revista Brasileira de Enfermagem, 73(3), 1–8. https://doi.org/10.1590/0034-7167-2018-0965

Lei, R., Zhu, F., Cheng, H., Liu, J., Shen, C., Zhang, C., Xu, Y., Xiao, C., Li, X., Zhang, J., Ding, R., & Cao, J. (2019). Short-term effect of PM2.5/O3 on non-accidental and respiratory deaths in highly polluted area of China. Atmospheric Pollution Research, 10(5), 1412–1419. https://doi.org/10.1016/j.apr.2019.03.013

Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8(February), 1–13. https://doi.org/10.3389/fpubh.2020.00014

Manousakas, M., Papaefthymiou, H., Diapouli, E., Migliori, A., Karydas, A. G., Bogdanovic-Radovic, I., & Eleftheriadis, K. (2017). Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Science of the Total Environment, 574, 155–164. https://doi.org/10.1016/j.scitotenv.2016.09.047

Martelletti, L., & Martelletti, P. (2020). Air Pollution and the Novel Covid-19 Disease: a Putative Disease Risk Factor. SN Comprehensive Clinical Medicine, 2(4), 383–387. https://doi.org/10.1007/s42399-020-00274-4

Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step time series forecasting of electric load using machine learning models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10841 LNAI. Springer International Publishing. https://doi.org/10.1007/978-3-319-91253-0_15

Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: sources, distribution and health effects. Environmental Chemistry Letters, 15(2), 283–309. https://doi.org/10.1007/s10311-017-0611-9

Nor, M. E., Safuan, H. M., Shab, N. F. M., Asrul, M., Abdullah, A., Mohamad, N. A. I., & Lee, M. H. (2017). Neural network versus classical time series forecasting models. AIP Conference Proceedings, 1842. https://doi.org/10.1063/1.4982865

Pini, L., Giordani, J., Gardini, G., Concoreggi, C., Pini, A., Perger, E., Vizzardi, E., Di Bona, D., Cappelli, C., Ciarfaglia, M., & Tantucci, C. (2021). Emergency department admission and hospitalization for COPD exacerbation and particulate matter short-term exposure in Brescia, a highly polluted town in northern Italy. Respiratory Medicine, 179(February), 106334. https://doi.org/10.1016/j.rmed.2021.106334

Pribadi, W., & Kartiasih, F. (2020). Environmental Quality and Poverty Assessment in Indonesia. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(1), 89–97. https://doi.org/10.29244/jpsl.10.1.89-97

Puri, P., Nandar, S. K., Kathuria, S., & Ramesh, V. (2017). Effects of air pollution on the skin: A review. Indian Journal of Dermatology, Venereology and Leprology, 83(4), 415–423. https://doi.org/10.4103/0378-6323.199579

Riyadi, S. (2015). Aplikasi Peramalan Penjualanobat Menggunakan Metodepemulusan (Studi Kasus: Instalasi Farmasi Rsud Dr Murjani). Seminar Nasional Teknologi Informasi Dan Multimedia 2015, 1, 1–6.

Robeson, S. M., & Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE, 18(2 February), 1–8. https://doi.org/10.1371/journal.pone.0279774

Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5), 1471–1481. https://doi.org/10.1007/s11600-019-00330-1

Sari, N. R., Mahmudy, W. F., Wibawa, A. P., & Sonalitha, E. (2017). Enabling external factors for inflation rate forecasting using fuzzy neural system. International Journal of Electrical and Computer Engineering, 7(5), 2746–2756. https://doi.org/10.11591/ijece.v7i5.pp2746-2756

Shafiei, S., & Salim, R. A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy, 66, 547–556. https://doi.org/10.1016/j.enpol.2013.10.064

Shahrbaf, M. A., Akbarzadeh, M. A., Tabary, M., & Khaheshi, I. (2021). Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Current Problems in Cardiology, 46(3). https://doi.org/10.1016/j.cpcardiol.2020.100649

Shi, J., Jain, M., & Narasimhan, G. (2022). Time Series Forecasting (TSF) Using Various Deep Learning Models. June.

Švédová, B., Raclavská, H., Kucbel, M., Růžičková, J., Raclavský, K., Koliba, M., & Juchelková, D. (2020). Concentration variability of water-soluble ions during the acceptable and exceeded pollution in an industrial region. International Journal of Environmental Research and Public Health, 17(10). https://doi.org/10.3390/ijerph17103447

Swardanasuta, I. B. P., Sandy, N. R. K., Rohmah, N. A., Arindah, Y., & Kartiasih, F. (2024). The Effect of Industrial Value Added, Energy Consumption, Food Crop Production, and Air Temperature on Greenhouse Gas Emissions in Indonesia: A Time Series Analysis Approach. Jurnal Pertanian Agros, 26(1), 4848–4865. http://dx.doi.org/10.37159/j. p agros.v26i1.3876

Thangavel, P., Park, D., & Lee, Y. C. (2022). Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. International Journal of Environmental Research and Public Health, 19(12). https://doi.org/10.3390/ijerph19127511

Wang, Y., Li, C., Zhang, X., Kang, X., Li, Y., Zhang, W., Chen, Y., Liu, Y., Wang, W., Ge, M., & Du, L. (2021). Exposure to PM2.5 aggravates Parkinson’s disease via inhibition of autophagy and mitophagy pathway. Toxicology, 456(January), 152770. https://doi.org/10.1016/j.tox.2021.152770

WHO. (2023). World Health Organization: Air Pollution.

Wilson, G. T. (2016). Time Series Analysis: Forecasting and Control, 5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978‐1‐118‐67502‐1. Journal of Time Series Analysis, 37(5), 709–711. https://doi.org/10.1111/jtsa.12194

Wilson, W. E., & Suh, H. H. (1997). Fine particles and coarse particles: Concentration relationships relevant to epidemiologic studies. Journal of the Air and Waste Management Association, 47(12), 1238–1249. https://doi.org/10.1080/10473289.1997.10464074

Wyatt, L. H., Weaver, A. M., Moyer, J., Schwartz, J. D., Di, Q., D.-S., D., Cascio, W. E., & Ward-Caviness, C. K. (2022). Short-term PM2.5 exposure and early-readmission risk: A retrospective cohort study in North Carolina heart failure patients. Am. Heart J, 248, 130–138.

Xie, G., Sun, L., Yang, W., Wang, R., Shang, L., Yang, L., Qi, C., Xin, J., Yue, J., & Chung, M. C. (2021). Maternal exposure to PM2.5 was linked to elevated risk of stillbirth. Chemosphere, 283, 131169. https://doi.org/10.1016/j.chemosphere.2021.131169

Yen, N. Y., Chang, J. W., Liao, J. Y., & Yong, Y. M. (2020). Analysis of interpolation algorithms for the missing values in IoT time series: a case of air quality in Taiwan. Journal of Supercomputing, 76(8), 6475–6500. https://doi.org/10.1007/s11227-019-02991-7

Yuan, H., Xu, G., Yao, Z., Jia, J., & Zhang, Y. (2018). Imputation of missing data in time series for air pollutants using long short-term memory recurrent neural networks. UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers, 1293–1300. https://doi.org/10.1145/3267305.3274648

Zhang, G., Rui, X., & Fan, Y. (2018). Critical review of methods to estimate PM2.5 concentrations within specified research region. Canadian Historical Review, 7(9). https://doi.org/10.3390/ijgi7090368

Zhang, L., Yang, Y., Li, Y., Qian, Z. (Min), Xiao, W., Wang, X., Rolling, C. A., Liu, E., Xiao, J., Zeng, W., Liu, T., Li, X., Yao, Z., Wang, H., Ma, W., & Lin, H. (2019). Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Science of the Total Environment, 688, 136–142. https://doi.org/10.1016/j.scitotenv.2019.05.470

Zhang, Y., Ding, Z., Xiang, Q., Wang, W., Huang, L., & Mao, F. (2020). Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health, 224(September), 113418. https://doi.org/10.1016/j.ijheh.2019.11.001

Zhao, C. N., Xu, Z., Wu, G. C., Mao, Y. M., Liu, L. N., Qian-Wu, Dan, Y. L., Tao, S. S., Zhang, Q., Sam, N. B., Fan, Y. G., Zou, Y. F., Ye, D. Q., & Pan, H. F. (2019). Emerging role of air pollution in autoimmune diseases. Autoimmunity Reviews, 18(6), 607–614. https://doi.org/10.1016/j.autrev.2018.12.010

Downloads

Published

2024-05-14